
© ENABLE Consortium

Title: Document Version:

Deliverable D6.2
Report on final prototypes, network integration and validation 1.2

Project Number: Project Acronym: Project Title:

027002 ENABLE Enabling efficient and operational mobility in large heterogeneous IP networks

Contractual Delivery Date: Actual Delivery Date: Deliverable Type* - Security**:

31/12/2007 31/12/2007 R – PU

* Type: P – Prototype, R – Report, D – Demonstrator, O – Other
** Security Class: PU- Public, PP – Restricted to other programme participants (including the Commission), RE – Restricted to a group

defined by the consortium (including the Commission), CO – Confidential, only for members of the consortium (including
the Commission)

Responsible and Editor/Author: Organization: Contributing WP:

Miguel Ponce de Leon WIT-TSSG WP6

Authors (organizations):

Karl Mayer (IABG), Wolfgang Fritsche (IABG), Timm Brueck (IABG), Philipp Hofmann (IABG), Alejandro Perez
Mendez (UMU), Niklas Steinleitner (UGOE), Miguel A. Diaz (CONSULINTEL), Luca Battistoni (TI), Michele La
Monaca (TI),Ting Yang (Huawei), Qazi Bouland Mussabbir (Brunel), Niall Clancy (WIT-TSSG), Leigh Griffin
(WIT-TSSG), John Ronan (WIT-TSSG), Eamonn Power (WIT-TSSG)

Abstract:

This document describes the integration of elements, entities and components from work packages 2-5
and highlights the verification of the MIPv6 service environment architecture and requirements.

Keywords:

software development, prototypes, test-bed, demonstration, IPv6, Mobile IPv6.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 2 of 153

Revision History

The following table describes all the main changes completed on the document since its creation.

Revision Date Description Author (Organization)

V0.1 27/07/2007 Document creation and initial ToC M. Ponce de Leon (WIT-
TSSG)

V0.2 27/11/2007 Added Section 2.1.4: Home Agent load
sharing.

Added Section 2.1.3 AAA for MIPv6

Karl Mayer, Wolfgang
Fritsche, Timm Brueck,
Philipp Hofmann (IABG).

Alejandro Perez Mendez
(UMU)

V0.3 28/11/2007 Added Section Added Section 2.2.1: Mobile
IPv6 Firewall Traversal and section 3.2: Test
bed for NSIS / Mobile IPv6 Firewall Traversal.

Modifications to Section 2.1.4

Added Section 2.2.2

Niklas Steinleitner (UGOE)

Karl Mayer (IABG)

Ting Yang (Huawei)

V0.4 30/11/2007 Updated Figure 2.14

Added 2.1.2 DHCPv6 with EAP and 2.1.5
Interworking with IPv4 networks

Modified Section 2.1.3

Karl Mayer (IABG)

Miguel A. Diaz
(CONSULINTEL), Luca
Battistoni (TI)

Alejandro Perez Mendez
(UMU)

V0.5 03/12/2007 Update to Section 2.1.2, 2.1.5, & 2.2.2 Luca Battistoni (TI), Miguel A.
Diaz (CONSULINTEL), Qazi
Bouland Mussabbir (Brunel)

V0.6 05/12/2007 Added section 2.1.1 and 3.1 Michele La Monaca (TI)

V0.7 06/12/2007 Added section 5 Miguel Ponce de Leon
(TSSG), Niall Clancy (TSSG)

V0.8 07/12/2007 Added Section 1 , Section 4 and Appendix A Miguel Ponce de Leon
(TSSG), Niall Clancy (TSSG)

V0.9 12/12/2007 Revision of Section 2.2.1 and Section 3.2. Niklas Steinleitner (UGOE)

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 3 of 153

V0.10 13/12/2007 Revision of Section 2.2.2 Section 3.3, Section
4, section 5.1 & Appendix A

Miguel Ponce de Leon, Niall
Clancy, Leigh Griffin (TSSG),

Qazi Bouland Mussabbir,
Shoaib Khan (Brunel)

V0.11 14/12/2007 Revision to Section 2.1.3, and addition of
Section 5.1.2

Alejandro Perez Mendez
(UMU)

Niklas Steinleitner (UGOE)

V0.12 17/12/2007 Added Executive Summary, Section 5.3,
Appendix B and Appendix C

Miguel Ponce de Leon
(TSSG)

V0.13 18/12/2007 Added TIs changes and cleaned up
References

Niall Clancy (TSSG)

V1.0 21/12/2007 Integrated changes and made version one Niall Clancy (TSSG),
Eamonn Power (TSSG),
Leigh Griffin (TSSG), John
Ronan (TSSG)

V1.1 21/12/2007 Deleted comments over the document Miguel A. Diaz
(CONSULINTEL)

V1.2 21/12/2006 Updated Summary Niall Clancy (TSSG)

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 4 of 153

Executive Summary

With the second year WP6 activities for ENABLE including the completion of software
development on specific functional components from the ENABLE work packages 1 to 4, the
integration of these elements, entities and components, the conformance testing of these
components to the ENABLE architecture and finally the demonstration of this new MIPv6
service environment, this document D6.2 describes the final achievements of WP6.

The document sets forth how ENABLE has realised three of its key seven objectives through
WP6. That is to say, the document shows how ENABLE has “developed the required
technologies to enable the deployment of Mobile IPv6 in real-life environments“(Objective 2).
Section 2 provides an in-depth explanation of how the ENABLE software developed
technological components were designed and created.

With ENABLE looking to “investigate solutions to improve the reliability of Mobile IPv6 and
enable an optimal usage of network resources for the deployment of Mobile IPv6 in a provider
network” (Objective 3), Section 3 provides an insight into the infrastructure necessary for the
deployment of Mobile IPv6 in a provider network with Section 4 elaborating on a service which
has high reliability requirements (search and rescue), and provides a demonstration of the
solution necessary to enable an optimal usage of the network resources in this scenario.

Finally ENABLE had set an objective to “validate the results of the developed mechanisms and
technologies through prototyping and laboratory testing” (Objective 6), and in Section 5 the
details of the methodology used to validate and verify the ENABLE developments with details
of the system tests carried out in this methodology described. Section 6 illustrates the
collaboration efforts with IST-ANEMONE.

With the ENABLE software components tested, integrated and demonstrated as the application
scenario (search & rescue), WP6 has gone someway to show that ENABLE research has
facilitated efficient and operational mobility in large heterogeneous IP networks.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 5 of 153

Table of Contents
1. Introduction ..8

2. Final Prototyping ...9

2.1 Integrated Software of ENABLE...10
2.1.1 EAP-based MIPv6 bootstrapping..10

2.1.1.1 Xsupplicant module (MN) ..11
2.1.1.2 Freeradius module (ASA) ...12
2.1.1.3 Radius User DB module (ASA) ..13

2.1.2 DHCPv6 with EAP..14
2.1.2.1 Overview ...14
2.1.2.2 Module NAS ...17
2.1.2.3 Module ASA/Freeradius and interfaces Pe and Pk ...18
2.1.2.4 Module DHCPv6 client and interface Pi...19
2.1.2.5 Module DHCPv6 relay and interface Pj..22
2.1.2.6 Module DHCPv6 server and interface Pj ..27

2.1.3 AAA for MIPv6 ..33
2.1.3.1 Module ike2d-mn (MN) ..34
2.1.3.2 Module ike2d-ha (HA) ..38
2.1.3.3 Module diametermip6 (HA)..42
2.1.3.4 Module msad (MSA)...45

2.1.4 Home Agent load sharing..47
2.1.4.1 Overview ...47
2.1.4.2 Module NETSNMP and interface He ...49
2.1.4.3 HA-DB module ...50
2.1.4.4 HA Manager Module and interfaces Pc and Da..52
2.1.4.5 HA Select module and interfaces Pd and Ac ..53

2.1.5 Interworking with IPv4 networks..54
2.1.5.1 DSMIP6...55

2.1.5.1.1 DSMIP6 Overview..55
2.1.5.1.2 Dual Stack MN and HA ..55
2.1.5.1.3 Movement detection..56
2.1.5.1.4 Kernel development ..57
2.1.5.1.5 MIPL userspace development ...57
2.1.5.1.6 MN development...58
2.1.5.1.7 HA development ...58

2.1.5.2 Softwires..59
2.1.5.2.1 Softwires overview..59
2.1.5.2.2 Modules SC and SI and interfaces ..62

2.2 Additional Software Developments ...68
2.2.1 Mobile IPv6 Firewall Traversal ..68

2.2.1.1 Mobile IPv6 Firewall Traversal Reference Architecture68
2.2.1.2 Software modules..70

2.2.1.2.1 MIPL (MN) ...70
2.2.1.2.2 MIPL (HA)..77
2.2.1.2.3 MIPL (CN) ..79
2.2.1.2.4 MIP6FWD...80

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 6 of 153

2.2.1.2.5 NSIS ..81
2.2.1.2.6 NAT/FW NSLP...82
2.2.1.2.7 ip6tables ..85

2.2.2 Mobility optimisations ..85
2.2.2.1 Overview of FMIPv6 applicability to the GSABA architecture86

2.2.2.1.1 MN ..87
2.2.2.1.2 AR ...87
2.2.2.1.3 GSABA Proxy/Server ...87

2.2.2.2 Implemented Software Modules ...88
2.2.2.2.1 MN ..88
2.2.2.2.2 ARs (pAR & nAR)..94
2.2.2.2.3 GSABA Server..98

3. Final test-bed design ..99

3.1 Test-bed for Integrated Software...99

3.2 Test bed for NSIS / Mobile IPv6 firewall traversal..100

3.3 Test bed for Mobility Optimisations..101

4. Instantiation of the Application Scenario ...103

4.1 Definition of the ENABLE Demonstration ...103
4.1.1 SAR Scene 3 Demonstration...103
4.1.2 SAR Scene 6 Demonstration...104

4.2 Trial of the ENABLE Demonstration..106
4.2.1 Trial Test bed ..106
4.2.2 ENABLE Software Components ..106
4.2.3 Demonstration Visualisation Application ...106
4.2.4 Ruby Server...107
4.2.5 Demonstration Example..108

5. Test Management and Methodology ...109

5.1 Test Cases...110
5.1.1 Summary of Test Case Scenarios..110
5.1.2 Integrated Software Test Cases ...111

5.1.2.1 Enable Test Case Scenario 001: Split bootstrapping111
5.1.2.2 Enable Test Case Scenario 002: HA Load Sharing...113
5.1.2.3 Enable Test Case Scenario 003: Integrated Bootstrapping EAP.....................114
5.1.2.4 Enable Test Case Scenario 004: Integrated Bootstrapping DHCPv6117
5.1.2.5 Enable Test Case Scenario 005: Handover IPv4Interworking........................119
5.1.2.6 Enable Test Case Scenario 006: Split bootstrapping PDA120
5.1.2.7 Enable Test Case Scenario 007: Handover PDA ..121
5.1.2.8 Enable Test Case Scenario 008: VoIP Call with Streaming Audio123
5.1.2.9 Enable Test Case Scenario 009: Streaming Video with Handover.................124

5.1.3 Mobile IPv6 Firewall Traversal Test Cases ..126
5.1.3.1 Enable Test Case Scenario 010: Pinhole creation for BU/BA after handover 126
5.1.3.2 Enable Test Case Scenario 011: Pinhole creation for BT/RO data traffic127
5.1.3.3 Enable Test Case Scenario 012: Pinhole deletion...128

5.1.4 Mobility Optimisation Test Cases...130
5.1.4.1 Enable Test Case Scenario 013: Mobility Optimised Handover.....................130

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 7 of 153

5.1.4.2 Enable Test Case Scenario 014: Streaming with Mobility Optimised Handover
 131

5.1.5 Test Case Evaluation...133

5.2 S/W Development Management...134

5.3 Test Reporting/Debugging Tools Description...134

6. Collaboration with IST projects (TI) ...136

7. Conclusion ..137

8. References...139

Appendix A. ..142

Appendix B. ..151

Appendix C. ..153

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 8 of 153

1. INTRODUCTION

ENABLE has undertaken a significant programme of software implementation in this second
year of the project which has involved the prototyping of a number of functional components as
specified in [ENA-D6.1], the network integration and trials of these prototypes and finally the
validation and verification of this new MIPv6 service environment.

Section 2 of this document provides an overview of these software prototypes, with a description
of how each specific ENABLE technological component was designed, and then in detail shows
the six functional components, EAP-based MIPv6 bootstrapping (WP1), AAA for MIPv6
bootstrapping (WP1) Interworking with IPv4 networks (WP2), MIPv6 firewall traversal (WP2),
HA load sharing (WP3) and Fast Mobile IPv6 (FMIPv6) (WP4) as functionalities that will be
used in the demonstration scenario.

Section 3 provides a description of the research trial infrastructure, which was initially used to
check the compatibility and the functionality of the software modules being created by ENABLE
and then goes on to describe the projects’ MIPv6 service environment test bed, where the
component integration and then the final demonstration were carried out.

Section 4 presents the link between the application scenarios as described in [ENA-D6.1], and
the instantiation of the ENABLE demonstration. In [ENA-D6.1] two scenes (Scene 3 & Scene 6)
from the search & rescue management scenario were chosen to be demonstrated in the final
project trial and this Section 4 shows how the main actor in these scenes comes in and goes
through the ENABLE MIPv6 service environment test bed, accessing the different networks
(IPv6-EAP-capable, IPv4-only and dual-stack) as the search & rescue is being carried out.

Section 5 contains the methodology used to validate and verify the ENABLE developments. It
also outlines the system tests carried out in the validation phase.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 9 of 153

2. FINAL PROTOTYPING

In order to aid the deployment of an efficient and operational mobility service in large scale IPv6
network environments, as detailed in [ENA-D6.1] ENABLE identified a number of functional
components to develop further into working prototypes, as shown in the Table 2-1 below.

Table 2-1 Software developments per partner

Operational Mobile
IPv6 architecture

Implemented
by

Bootstrapping and

control of mobility

Split Scenario.

Diameter and EAP
TI/UMU

Bootstrapping and

control of mobility
IKEv2 + EAP UMU

Bootstrapping and

control of mobility

service

EAP-based

bootstrapping
TI

From WP1

Bootstrapping and

control of mobility

service

DHCPv6 extensions on

access router
CONSULINTEL

Middlebox traversal NSIS solution UGOE

Interworking with IPv4

network

DSMIP including moving

detection algorithm
TI

From WP2

Interworking with IPv4

network

Softwires as tunnelling

solution for IPv4

interworking

CONSULINTEL

From WP3
Load sharing

HA decision rule based

on weighted
IABG

From WP4
Mobility optimizations FMIPv6 Huawei, Brunel

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 10 of 153

The main difference between this Table 2.1 and the one shown in [ENA-D6.1] is the addition of
the developments for “DHCPv6 extensions on access router” under WP1 and the “Softwires as
tunnelling solution for IPv4 interworking” under WP2. The development which remains
uncompleted was the “VRRPv6 Extensions for homeagent-reliability” and so it has been
removed for the list.

Five of the developed components from WP1, WP2 and WP3 have integrated seamlessly,
namely the EAP-based MIPv6 bootstrapping (with and without MIPv6 DHCPv6 extensions and
DNS/IKEv2), AAA for MIPv6 bootstrapping, DSMIP interworking with IPv4 networks,
Softwires as tunnelling solution for IPv4 interworking, and HA load sharing. These components
will be described in further detail in this section. The MIPv6 firewall traversal and Fast Mobile
IPv6 (FMIPv6) while remaining as two components that were developed as separate mobility
extension solutions, will also be described in the latter part of this section..

2.1 Integrated Software of ENABLE

2.1.1 EAP-based MIPv6 bootstrapping

Some EAP methods (e.g. [PEAPv2], [EAP-AKA]) are able to convey generic information items
along with authentication data. This flexibility allows configuring bootstrapping parameters
during the MN’s authentication for network access. Upon the successful completion of the
authentication phase Configuration Type-length-values (TLV) are exchanged to deliver the
bootstrapping information.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 11 of 153

Ma

MN HA

MSAASA

HA-DB
manager

DNS

ike2d-mn

MIPL

Mb

ike2d-ha

MIPL

NETSNMPHA Manager

HA DB

Users DB*

Freeradius HA select

Users DB*

msad

Ph

Pe

Da

Pa

Pb

Pc

Pd

Hc

Hd
He

Pf Pg

Ab

Ac

DHCPv6
server

DHCPv6
client

Xsupplicant

Pi

Pj

Aa

DHCPv6
relay

Authenticator

Pk

Pl

diametermip6

NAS

Figure 2-1 Software modules and interfaces related to EAP-based MIP6 bootstrapping

The EAP channel is therefore used to perform user authentication and the bootstrapping of
MIPv6 parameters. IEEE 802.1X is used to exchange EAP packets between the MN and the AP,
while RADIUS [RFC2138] is used between the AP and the ASA-AAA. The AP (authenticator)
is a RADIUS client on the NAS which forwards the EAP messages coming from the supplicant
(MN) to the AAA server.

2.1.1.1 Xsupplicant module (MN)

The Xsupplicant module realizes the role of IEEE 802.1x supplicant. The distribution used for
development is the v1.0 of the open source Xsupplicant application [Xsupplicant].

In order to be able to perform the operation required to obtain and process the information
required to bootstrap the MIPv6 service, the following modification had been done:

• Implementation of the PEAPv2 module (starting from Xsupplicant’s already
implemented PEAP v0/v1 module).

• Implementation of the code to handle MIPv6 service activation.

Further details on the various interfaces related to this module have been already described in
[ENA-D6.1]. A major departure from [ENA-D6.1] is that the interface between Xsupplicant and
MIPL (Mb) has been greatly simplified. That interface was planned as an inter process interface

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 12 of 153

implemented through a UDP socket. Since the main goal of this interface was to convey the HA
address to the MIPL daemon, the overhead of keeping a socket up and running just for this
purpose has been judged overkill. In the final prototype the Xsupplicant simply inserts the
bootstrapped parameters in the configuration file used by the MIPL daemon.

2.1.1.2 Freeradius module (ASA)

The ASA functionality has been implemented with [FreeRADIUS] which is the premiere open
source RADIUS server (released under the GNU General Public License). The server natively
ships with libraries for interfacing with LDAP, MySQL, PostgreSQL and Oracle databases and it
supports EAP with EAP-MD5, EAP-SIM, EAP-TLS, EAP-TTLS, EAP-PEAP, and Cisco LEAP
sub-types.

TI maintains an internal version (forked as of Apr 2004 from the CVS repository) of the program
to develop custom extensions, this version has been used as the starting point for the
developments in ENABLE. FreeRADIUS is developed in the C language and it is an amalgam of
a core module, the radiusd daemon, and a set of modules which are linked dynamically at run
time (dlopen): the core is in charge of handling the RADIUS protocol, while all other functions
(authentication protocols, interaction with external databases, etc.) are implemented within
modules.

…

…

SQL LDAP CHAPKRB5

RADIUS core (radiusd)

EAP

TLS PEAP TLVMSCHAP

Figure 2-2: FreeRADIUS Software Architecture

Complex functionalities are realised through the usage of a cascade of modules; for example
each EAP method is implemented in a separate module. The interface between the RADIUS core
and its modules is standardised; the same is true for the EAP module and the modules which
implement EAP methods.

In order to implement the required ENABLE functionalities, the PEAP module has been
modified to support PEAPv2 and another ad hoc module (TLV) has been created to process the
TLVs. A further module linked to the TLV, has been implemented for the MIPv6 bootstrapping.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 13 of 153

Care has been taken in order to realise a modular framework: new services can be bootstrapped
adding new modules and using the same interface defined for the interaction between the TLV
and MIPv6 module.

EAP

TLS PEAPMSCHAP

MIPv6

TLV

Figure 2-3: MIPv6 bootstrapping module

The SQL module has been also modified to let the MIPv6 module access a SQL database to
retrieve users’ information for the MIPv6 bootstrapping. Indeed, the original SQL module was
only able to perform SQL queries specified in a configuration file and consequently has been
adapted to perform dynamic queries using as input the SQL requests passed by the MIPv6
module.

2.1.1.3 Radius User DB module (ASA)

The Radius User DB module is a SQL database which is a compound of two main tables:

• access_profiles: holds the data for network access authorization, plus the information on
which services to be bootstrapped.

Figure 2-4: access_profiles table

• mipv6_profiles: holds the data for bootstrapping the MIPv6 service.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 14 of 153

Figure 2-5: mipv6_profiles table

Furthermore, FreeRADIUS SQL queries require the presence of an additional table for each
main table containing the name of the attribute to be transmitted and an operator (always “:=”).

Figure 2-6: access_profiles_attibutes table

Figure 2-7: mipv6_profiles_attributes table

2.1.2 DHCPv6 with EAP

Some new DHCPv6 options have been developed in order to extend the behaviour of all the
DHCPv6 agents (i.e. client, relay and server) to support MIPv6 capabilities. This allows the MN
bootstrap when no EAP-extensions are available, as explained below.

2.1.2.1 Overview

In this scenario the access network is not provisioned with the EAP extensions which provide the
MIPv6 parameters in bootstrapping. In this case the HA address is provisioned by using the
DHCPv6 extensions as described in [draft-ietf-mip6-hiopt-02.txt]. Based on the relationships
among the MASA, MSP and ASP, the HA can be assigned locally (i.e. in the ASP network),
remotely (i.e. in the MASA domain) or in a third-party MSP domain. The details of these three
cases are described in [ENA-D1.2], section 2.4. However, from the perspective of the software
development description there are no significant differences from both the components
architecture and the message flows. The DHCPv6 scenario has been summarized in the
following figures below, which represent the case in which the HA is provided by the Home
Provider Network (MASA acts as the MSP):

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 15 of 153

Ma

MN HA

MSAASA

HA-DB
manager

DNS

ide2d-mn

MIPL

Mb

ike2d-ha

MIPL

NETSNMPHA Manager

HA DB

Users DB*

Freeradius HA select

Users DB*

msad

Ph

Pe

Da

Pa

Pb

Pc

Pd

Hc

Hd
He

Pf Pg

Ab

Ac

DCPv6
server

DHCPv6
client

Xsupplicant

Pi

Pj

Aa

DHCPv6
relay

Authenticator

Pk

Pl

diametermip6

NAS

Figure 2-8: DHCPv6 components and interfaces in the reference architecture

As shown there are three DHCPv6 components:
• DHCPv6 client: It is installed in the MN and is in charge of requesting network

parameters through the DHCPv6 protocol, i.e. DNS server address, HA address, etc.
• DHCPv6 relay: It is installed in the NAS and is responsible for relaying the DHCPv6

request messages from the DHCPv6 client to the DHCPv6 server.
• DHCPv6 server: It is a network component installed in the ASP domain for providing

the network parameters requested by the DHCPv6 client.

All the involved components interact according to the following message flow:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 16 of 153

MN NAS
ASP
AAA

MASA
AAA

2. AA-Request 3. AA-Request
(MIPv6 features)

4. AA-Answer
(HA info. & home network id.)5. AA-Answer

(HA info. & home network id.,)

N round trips
(depends on

auth. method)

6. Stores
HA info.

8. Authorized
for network access

1. Request

7. Answer

Figure 2-9: EAP not available, DHCPv6 available – message flow (1)

MN NAS
DHCP
Server

ASP
AAA

MASA
AAA

9. DHCPv6 Inf. Req.
(MN id.,

home network id.)
10. DHCPv6 Relay-Forward

(HA info. received from
MASA AAA server)

11. DHCPv6 Relay-Reply12. DHCPv6 Inf. Rep.
(HA info.)

HA

13. IKEv2 (Home Address assignment) 14. Authent. &
key exchange

15. MIPv6 registration (BU/BA) 16. Authoriz

Figure 2-10: EAP not available, DHCPv6 available – message flow (2)

The most significant steps that are specific to this scenario are highlighted as follows:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 17 of 153

• Step 6: After the MN is authorized to use the network access, the ASP/AAA sends the
NAS the RADIUS Access-Accept message which includes a new AVP with the HA
address assigned by the MASA to the MN. The HA is stored in the DHCPv6 relay (NAS).

• Step 9: After the MN realizes that it has been authorized to use the network, it runs the
DHCPv6 client in order to get the HA address (and optionally other parameters like other
IPv6 address, DNS server address, NTP server address, etc.). The DHCPv6 client
includes the new Home Network Identifier Option defined in [draft-ietf-mip6-hiopt-
02.txt] intended to ask for the HA address.

• Step 10: The DHCPv6 relay forwards the DHCPv6 message from the MN (DHCPv6
client) and it includes the HA address into the new MIP6 Relay Agent Option in order to
let the DHCPv6 server know what the HA was assigned by the MASA.

• Step 11: The DHCPv6 server sends the replay with all the information required by the
MN (i.e. DNS server, IPv6 address, etc.), including the HA address sent by the DHCPv6
relay. The HA address is sent by using the new Home Network Information Option.

The base code for developing the MIPv6 DHCPv6 extensions has been the DCHPv6
implementation [WIDE-DHCPV6] done by the [WIDE] project. Release 20061016 provides the
three DHCPv6 components required in this scenario: client, relay and server. It has been
modified in order to include the MIPv6 extensions required in this scenario.

2.1.2.2 Module NAS

The access point used in the DHCPv6 scenario is the WRT54G wireless router by Linksys
because it allows the installation of applications developed by third-parties. To do that, it has
been necessary to install a new firmware to replace the original one released by Linksys. The
new firmware used is the Kamikaze_20061026_release developed by the [OpenWRT] project
[http://openwrt.org/]. The new firmware makes the access router a true Linux system with a ssh
server to logging into it.

In order to make any binary from the source code it is necessary to use the specific SDK
developed for the access router, which includes the cross-compiler and other tools (such as
binutils, kernel headers, libraries, scripts, etc.) that are required for compilation.

It has also been required to modify several configuration files and scripts on the access router in
order to setup some network parameters, network applications and wireless security (i.e. 802.1X
support) at start-up.

After these changes, the access router has been modified to work as a NAS based on 802.1X
access and having the DHCPv6 relay with the MIPv6 extensions installed on it as explained in
the next sections.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 18 of 153

2.1.2.3 Module ASA/Freeradius and interfaces Pe and Pk

The interface Pe is used not only to allow the MN authenticate itself by providing its credentials
but also to allow the ASA inform the NAS about the HA address assigned to the MN. This
information is provided as a new AVP within the RADIUS Access-Accept message, as shown in
the following figure.

At. Code = 0x12
0 8 16 31

Attribute Value

At. Length = 0x12

143
Figure 2-11: New AVP for the RADIUS Access-Accept message

The fields for this AVP are:
• Attribute: 0x12 to indicate that it is carrying the HA address.
• Length: 0x12 (18 bytes) which includes also the code and length fields
• Value: 32 ASCII characters, without colons, representing the HA address. The ASCII

characters are on the wire as half bytes (each character as 4 bits).

After the RADIUS Access-Accept message is received, the network Authenticator module
within the NAS picks out the HA address and sends it to the DHCPv6 relay through the interface
Pk. Indeed it is implemented as a plain text file where both the MN’s MAC address and the
assigned HA are stored together. The file is located under /tmp/dhcp6r.conf and in Figure 2-12
an example of its content is given.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 19 of 153

mac 00:00:00:01:aa:bb ha 2001:db8:1000:1::444;
mac 00:06:29:30:a8:d4 ha 2001:db8:1000:1::555;
mac 00:00:00:01:aa:bb ha 2001:db8:1000:1::666;
mac 00:00:00:01:aa:bb ha 2001:db8:1000:1::777;
mac 00:c0:26:50:19:00 ha 2001:db8:1000:1::888;
mac 00:00:00:01:aa:bb ha 2001:db8:1000:1::999;
mac 00:0f:66:54:7d:df ha 2001:7f9:547:1000::3456:baba;
mac 00:40:d0:12:34:56 ha 2001:db8:1000:1::aaa;
mac 00:03:ff:16:34:56 ha 2001:db8:1000:1::bbb;
mac 00:90:96:7e:ba:17 ha 2001:7f9:547:1000::3456:baba;
mac 00:0f:20:94:97:d1 ha 2001:06b8:0020:0186:0000:0000:0000:0ea1;

Figure 2-12: Example of file dhcp6r.conf for the DHCPv6 relay

2.1.2.4 Module DHCPv6 client and interface Pi

The DHCPv6 client developed by the WIDE project has been modified in order to carry the new
Home Network Identifier Option in both the DCPHv6 Solicit and Request messages. This
DHCPv6 messages are sent through the Pi interface.

The format of the new option is as specified in [draft-ietf-mip6-hiopt-02.txt]:

DHCPv6 OPTION CODE = 0x00C8 DHCPv6 OPTION LENGTH
0 8 16 31

Home Network Identifier

Id. Type

24

A reserved

Figure 2-13: DHCPv6 Home Network Identifier Option

The fields for this new option are the following:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 20 of 153

• Option code. The code for the new DHCPv6 option is set to 0x00C8 (200)
• Length: Total length of the option in octets.
• Id-type: The type of Home Network Identifier:

• 0 Visited domain (local ASP)
• 1 Home domain (home MSP)
• 2 No preference

• A flag: This flag specifies whether the client requests a home address or not.
• Reserved: 7-bit field reserved for future use. The value is initialized to 0 by the sender

and is ignored by the receiver.
• Home Network Identifier: The identifier to specify the requested home network of the

MN. This field is set to the network realm as the FQDN when id-type is 0 or 1.

This new option let the DHCPv6 relay/server know that the MN is interested in receiving the HA
address assigned to it.

Below is shown a true packet captured when the MN runs the DHCPv6 client:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 21 of 153

Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 74
 Next header: UDP (0x11)
 Hop limit: 64
 Source address: fe80::215:e9ff:fe4b:6e00 (fe80::215:e9ff:fe4b:6e00)
 Destination address: ff02::1:2 (ff02::1:2)
User Datagram Protocol, Src Port: 546 (546), Dst Port: 547 (547)
 Source port: 546 (546)
 Destination port: 547 (547)
 Length: 74 (bogus, should be 0)
 Checksum: 0xb734 [correct]
DHCPv6
 Message type: Solicit (1)
 Transaction-ID: 0x006fb909
 Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: Ethernet (1)
 Time: 249213110
 Link-layer address: 00:15:e9:4b:6e:00
 Rapid Commit
 option type: 14
 option length: 0
 Elapsed time
 option type: 8
 option length: 2
 elapsed-time: 0 sec
 Option Request
 option type: 6
 option length: 4
 Requested Option code: Unknown (31)
 Requested Option code: Unknown (200)
 DHCP option 200
 option type: 200
 option length: 22

Figure 2-14: Solicit DHCPv6 message with MIPv6 extensions

The DHCPv6 client is configured through the dhcp6c.conf file. The label used for carrying the
Home Network Identifier Option in the Solicit/Requests DHCPv6 messages is mip6-home-
network-identifier which must be inserted in the interface specification section as follows:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 22 of 153

interface eth1 {
 request domain-name-servers;
 send rapid-commit;
 request mip6-home-network-identifier "mip6.consulintel.es";
 script "/usr/local/sbin/bootstrapping_script.sh";
};

Figure 2-15: Configuration of dhcp6c.conf file for the DHCPv6 client

The label script is used for running a command/application after a DHCPv6 reply is received.

The command syntax for running the DHCPv6 client is as follows:

dhcp6c [-c configfile] [-Ddfi] [-p pid-file] interface [interfaces...]

The command line options are:
-c configfile
 Use configfile as the configuration file.
-d Print debugging messages.
-D Even more debugging information is printed.
-f Foreground mode.
-I Info-req mode.
 In this mode, stateless DHCPv6 is executed with an automatic
 configuration, and the obtained info is written to stdout. After
 this output, the program is terminated.
-p pid-file
 Use pid-file to dump the process ID of dhcp6c.

Figure 2-16: Command syntax for the DHCPv6 client

2.1.2.5 Module DHCPv6 relay and interface Pj

The DHCPv6 relay has been modified in order to look for the Home Network Identifier Option
in either the DHCPv6 Solicit or DHCPv6 Request messages, both received through the Pi
interface. In the event that the option is found, the relay gets the MN’s MAC address of the
DHCPv6 Solicit/Request message and looks for the proper entry in the dhcp6r.conf file. Such a
file was updated (interface Pk) with the RADIUS attributes that were received at the NAS from
the ASA when the MN was authorized to use the access network, as explained above.

The relay builds the new MIP6 Relay Agent Option with such information in order to inform the
DHCPv6 server about the MIPv6 information to include in the DHCPv6 replay through the Pj

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 23 of 153

interface. In the event that no HA address is found in the dhcp6r.conf file (interface Pk) then the
relay does not build the MIP6 Relay Agent Option.

According to [draft-ietf-mip6-hiopt-02.txt], the format of the new option is as follows:

DHCPv6 OPTION CODE = 0x00CA DHCPv6 OPTION LENGTH
0 8 16 31

MIP6 Relay Agent Sub-Options

24

Figure 2-17: DHCPv6 MIP6 Relay Agent Option

The fields for this new option are the following:
• Option code. The code for the new DHCPv6 option is set to 0x00CA (202)
• Length: Total length of the option in octets.
• Sub-options: Different types of MIPv6 information might be received by the ASA (HA

address, HoA, etc.). All this information is carried in different sub-options as follows.

0 8 16 31

Home Network Information

24
Sub-option code Sub-opti. length Reserved

Figure 2-18: DHCPv6 MIP6 Relay Agent Sub-option

The fields for this new sub-option are the following:
• Sub-option code. It identifies the type of the following Home Network Information field.

Possible values are:
• 0 Home subnet prefix
• 1 Complete IPv6 address of the HA
• 2 FQDN of the HA
• 3 IPv6 HoA

• Length: Total length of the following Home Network Information field.
• Reserved: 8-bit field reserved for future use. The value is initialized to 0 by the sender,

and is ignored by the receiver.
• Home Network Information: A home subnet prefix, home agent IP address, FQDN or

home address to be delivered to the DHCP server.

It is important to note that the ENABLE relay implementation builds the DHCPv6 MIP6 Relay
Agent Option according to the format specified in [draft-ietf-mip6-hiopt-02.txt], but it always

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 24 of 153

configures the sub-option code to 1 because in the ENABLE tests the MN is only interested in
receiving the HA address.

Below is shown a true packet captured when the DHCPv6 relay sends the DHCPv6 server the
DHCPv6 Relay-Forward packet:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 25 of 153

Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 143
 Next header: UDP (0x11)
 Hop limit: 61
 Source address: 2a01:48:24:60::baba (2a01:48:24:60::baba)
 Destination address: 2a01:48:1:2:205:1cff:fe17:e495

(2a01:48:1:2:205:1cff:fe17:e495)
User Datagram Protocol, Src Port: 546 (546), Dst Port: 547 (547)
 Source port: 546 (546)
 Destination port: 547 (547)
 Length: 143 (bogus, should be 0)
 Checksum: 0x2913 [correct]
DHCPv6
 Message type: Relay-forw (12)
 Hop count: 0
 Link-address: 2a01:48:24:80::baba
 Peer-address: fe80::215:e9ff:fe4b:6e00
 Relay Message
 option type: 9
 option length: 66
 DHCPv6
 Message type: Solicit (1)
 Transaction-ID: 0x006fb909
 Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: Ethernet (1)
 Time: 249213110
 Link-layer address: 00:15:e9:4b:6e:00
 Rapid Commit
 option type: 14
 option length: 0
 Elapsed time
 option type: 8
 option length: 2
 elapsed-time: 0 sec
 Option Request
 option type: 6
 option length: 4
 Requested Option code: Unknown (31)
 Requested Option code: Unknown (200)
 DHCP option 200
 option type: 200

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 26 of 153

 option length: 22
 Interface-Id
 option type: 18
 option length: 4
 Interface-ID
 DHCP option 202
 option type: 202
 option length: 19

Figure 2-19: Relay-Forward DHCPv6 message with MIPv6 extensions

The DHCPv6 relay is also in charge of sending both the DHCPv6 Advertise and DHCPv6 Reply
messages according to the information received from the DHCPv6 server through the DHCPv6
Forward-Reply message. In this procedure there is nothing different to the behaviour that is
standardized in [RFC3315].

The command syntax for running the DHCPv6 relay is as follows:

dhcp6relay [-c configfile] [-Ddf] [-b boundaddr] [-H hoplim]
 [-r relay-IF] [-s serveraddr] [-p pid-file] interface ...

The command line options are:
-c configfile
 Use configfile as the file for storing the HA address received
 from the ASA.
-d Print debugging messages.
-D Even more debugging information is printed.
-f Foreground mode.
-b boundaddr
 Specifies the source address to relay packets to servers (or
 other agents).
-H hoplim
 Specifies the hop limit of DHCPv6 Solicit messages forwarded to
 servers.
-r relay-IF
 Specifies the interface on which messages to servers are sent.
 When omitted, the same interface as interface will be used. When
 multiple interface are specified, this option cannot be omitted.
-s serveraddr
 Specifies the DHCPv6 server address to relay packets to. If not
 specified, packets are relayed to ff05::1:3 (All DHCPv6 servers).
-p pid-file
 Use pid-file to dump the process ID of dhcp6relay.

Figure 2-20: Command syntax for the DHCPv6 relay

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 27 of 153

2.1.2.6 Module DHCPv6 server and interface Pj

The DHCPv6 server has been modified to support the MIPv6 DHCPv6 extensions. In this way,
the DHCPv6 Relay-Forward message sent by the relay includes the MIP6 Relay Agent Option.
The server builds the DHCPv6 Relay-Replay message and inserts the new Home Network
Information Option with the information received in the MIP6 Relay Agent Option.

According to [draft-ietf-mip6-hiopt-02.txt], the format of the new option is as follows:

DHCPv6 OPTION CODE = 0x00C9 DHCPv6 OPTION LENGTH
0 8 16 31

Home Network Information Sub-Options

24

Figure 2-21: DHCPv6 Home Network Information Option

The fields for this new option are the following:
• Option code. The code for the new DHCPv6 option is set to 0x00C9 (201)
• Length: Total length of the option in octets.
• Sub-options: Different types of MIPv6 information might be received from the DHCPv6

relay (HA address, HoA, etc.). All this information is carried in different sub-options as
follows.

0 8 16 31

Home Network Information

24
Sub-option code Sub-opti. length ReservedV

Figure 2-22: DHCPv6 Home Network Information Sub-option

The fields for this new sub-option are the following:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 28 of 153

• Sub-option code. It identifies the type of the following Home Network Information field.
Possible values are:

• 0 Home subnet prefix
• 1 Complete IPv6 address of the HA
• 2 FQDN of the HA
• 3 IPv6 HoA

• Length: Total length of the following Home Network Information field.
• V flag: This flag specifies whether the information is assigned by the visited network or

not.
• Reserved: 7-bit field reserved for future use. The value is initialized to 0 by the sender,

and is ignored by the receiver.
• Home Network Information: A home subnet prefix, home agent IP address, FQDN or

home address to be delivered to the DHCP server. This information is provided by the
DHCPv6 relay through the MIP6 Relay Agent Sub-option.

Below is shown a true packet captured when the DHCPv6 server sends the DHCPv6 relay the
DHCPv6 Relay-Replay packet:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 29 of 153

Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 266
 Next header: UDP (0x11)
 Hop limit: 64
 Source address: 2a01:48:1:2:205:1cff:fe17:e495
 (2a01:48:1:2:205:1cff:fe17:e495)
 Destination address: 2a01:48:24:60::baba (2a01:48:24:60::baba)
User Datagram Protocol, Src Port: 34752 (34752), Dst Port: 547 (547)
 Source port: 34752 (34752)
 Destination port: 547 (547)
 Length: 266 (bogus, should be 0)
 Checksum: 0x9ad0 [correct]
DHCPv6
 Message type: Relay-reply (13)
 Hop count: 0
 Link-address: 2a01:48:24:80::baba
 Peer-address: fe80::215:e9ff:fe4b:6e00
 Relay Message
 option type: 9
 option length: 212
 DHCPv6
 Message type: Advertise (2)
 Transaction-ID: 0x006fb909
 Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: Ethernet (1)
 Time: 249213110
 Link-layer address: 00:15:e9:4b:6e:00
 Server Identifier
 option type: 2
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: Ethernet (1)
 Time: 249155216
 Link-layer address: 00:05:1c:17:e4:95
 DNS recursive name server
 option type: 23
 option length: 32
 DNS servers address: 2001:7f9:1000:1::103
 DNS servers address: 2001:7f9:1000:1::947c
 DHCP option 201
 option type: 201

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 30 of 153

 option length: 19
 Domain Search List
 option type: 24
 option length: 89
 DNS Domain Search List
 Domain: dns1.novagnet.com
 Domain: ns1.euro6ix.org
 Domain: dns1.consulintel.com
 DHCP option 31
 option type: 31
 option length: 16
 Interface-Id
 option type: 18
 option length: 4
 Interface-ID

Figure 2-23: Relay-Replay DHCPv6 message with MIPv6 extensions

The DHCPv6 Advertise message with the Home Network Information Option resulting from that
DHCPv6 Relay-Replay message (in the DHCPv6 relay, interface Pi) would be the following:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 31 of 153

Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 220
 Next header: UDP (0x11)
 Hop limit: 64
 Source address: fe80::290:4cff:fe5f:2a (fe80::290:4cff:fe5f:2a)
 Destination address: fe80::215:e9ff:fe4b:6e00
 (fe80::215:e9ff:fe4b:6e00)
User Datagram Protocol, Src Port: 547 (547), Dst Port: 546 (546)
 Source port: 547 (547)
 Destination port: 546 (546)
 Length: 220 (bogus, should be 0)
 Checksum: 0xd957 [correct]
DHCPv6
 Message type: Advertise (2)
 Transaction-ID: 0x006fb909
 Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: Ethernet (1)
 Time: 249213110
 Link-layer address: 00:15:e9:4b:6e:00
 Server Identifier
 option type: 2
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: Ethernet (1)
 Time: 249155216
 Link-layer address: 00:05:1c:17:e4:95
 DNS recursive name server
 option type: 23
 option length: 32
 DNS servers address: 2001:7f9:1000:1::103
 DNS servers address: 2001:7f9:1000:1::947c
 DHCP option 201
 option type: 201
 option length: 19
 Domain Search List
 option type: 24
 option length: 89
 DNS Domain Search List
 Domain: dns1.novagnet.com
 Domain: ns1.euro6ix.org
 Domain: dns1.consulintel.com

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 32 of 153

 DHCP option 31
 option type: 31
 option length: 16

Figure 2-24: Advertise DHCPv6 message with MIPv6 extensions

The DHCPv6 server can be configured through the dhcp6s.conf file with a default HA address
to be used in case no MIP6 Relay Agent Option is received. This forces the build of a DHCPv6
Relay-Replay message with that HA address in the Home Network Information Option. The
label used for configuring such a HA address is mip6-hninf-ha-address which must be inserted
out of the interface specification section as follows:

option mip6-hninf-ha-address 2001:7f9:1000:1::444;

The command syntax for running the DHCPv6 server is as follows:

dhcp6s [-c configfile] [-Ddf] [-k ctlkeyfile] [-p ctlport]
 [-P pid-file] interface

The command line options are:
-c configfile
 Use configfile as the configuration file.
-d Print debugging messages.
-D Even more debugging information is printed.
-f Foreground mode.
-k ctlkeyfile
 Use ctlkeyfile to store the shared secret to authenticate the
 communication with dhcp6sctl. The default file name used when
 unspecified is /usr/local/etc/dhcp6sctlkey. The default name is
 intentionally same as that for dhcp6sctl so that the server and
 the control command can share the file when dhcp6sctl controls
 the server on the same node, which should be the typical case.
-p ctlport
 Use ctlport as the port number listening on to communicate with
 dhcp6sctl.
-P pid-file
 Use pid-file to dump the process ID of dhcp6s.

Figure 2-25: Command syntax for the DHCPv6 server

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 33 of 153

2.1.3 AAA for MIPv6

When bootstrapping MIPv6 two differentiated scenarios may be presented, each one having
special requirements that must be kept in mind.

• Integrated scenario: the MSA and the ASA are the same entity.

• Split scenario: the MSA and the ASA are separated entities.

In the integrated scenario, the MSA + ASA (MASA) controls the entire bootstrapping procedure,
so it can provide mobility configuration parameters piggybacked on the network authentication
process. In this scenario there are two different possibilities to provide the HA address to the
MN: the MASA can deliver the HA directly within the EAP tunnel (if the MN access network
allows it) or it can be delivered via DHCPv6.

In the split scenario, the ASA does not know anything about mobility so the MN must discover
the HA address using DNS queries.

Once the HA address is known by the MN, the rest of the bootstrapping steps are the same in
both scenarios. First, the MN needs to authenticate with the HA, obtain a HoA and establish the
needed security associations (SAs) to protect the mobility signalling. All these actions are
performed by using the IKEv2 protocol. The authentication is performed in one of these two
ways:

1. IKEv2 and EAP. In the most general scenario the MN needs to authenticate with the
MSA using an EAP method. The HA acts as a pass-through authenticator, forwarding the
EAP packets from/to the MN (transported by IKE_AUTH messages) to/from the MSA
(transported by the Diameter EAP Application).

2. IKEv2 and PSK optimization. When the integrated scenario is being used and the MN
uses EAP to be authenticated in the network, the MN can use a key derived from the EAP
keying material to authenticate with the IKEv2 protocol (instead of performing a full
EAP method). The HA would need to retrieve the key from the MASA server, which is
able to generate exactly the same key as the MN does. This allows for savings on the
roundtrips needed to perform an EAP authentication.

After that, the MN can then send a Binding Update to the HA. The IKEv2 protocol only
authenticates the MN, so the mobility service must be explicitly authorized by the MSA upon
reception of this first BU (a new experimental authorization application is defined for this
purpose). In order to perform the authorization of the mobility service, the HA sends a Diameter
MIP6-Authorization-Request (MAR) to the MSA AAA server. This message has the Auth-

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 34 of 153

Request-Type AVP set to AUTHORIZE_ONLY, and includes at least a User-Name AVP
containing the identity that will be used to authorize the mobility service on behalf of the MN.

After checking the MN’s profile, the MSA-AAA replies with a Diameter MIP6-Authorization-
Answer which contains a Result-Code AVP with the authorization decision. This message may
also contain additional AVPs to enforce specific policies for the mobility service. The HA can
then send a BA to the MN, completing the bootstrapping process.

The involved software modules and interfaces are shown in the Figure 2-26 (in red colour).

Ma

MN HA

MSAASA

HA-DB
manager

DNS

ike2d-mn

MIPL

Mb

ike2d-ha

MIPL

NETSNMPHA Manager

HA DB

Users DB*

Freeradius HA select

Users DB*

msad

Ph

Pe

Da

Pa

Pb

Pc

Pd

Hc

Hd
He

Pf Pg

Ab

Ac

DCPv6
server

DHCPv6
client

Xsupplicant

Pi

Pj

Aa

DHCPv6
relay

Authenticator

Pk

Pl

diametermip6

NAS

Figure 2-26 AAA for MIP6 software modules and interfaces in the reference architecture

2.1.3.1 Module ike2d-mn (MN)

The MN needs to perform IKEv2 exchanges to create the IPsec security associations between
HA and MN, to obtain the assigned HoA and to get authenticated for MIPv6 service. A software
module called ike2d-mn has been developed to provide this functionality. This module makes
use of the libopenikev2 and libopenikev2_impl libraries, but including some modifications to
accomplish the additional ENABLE behaviour:

• A new EAP client controller has been developed in order to support client authentication
via EAP TLS.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 35 of 153

• The XFRM Ipsec controller has been improved in order to manage correctly the selectors
including the Ipv6 Mobility Header.

This new daemon has the following behaviour:

• When the ike2d-mn starts, it keeps waiting on the interface Ma until a “HoA Request”
message is received from the MIPL daemon.

• When a “HoA Request” message is received, the needed IKEv2 exchanges are performed
(using the Pa interface) in order to authenticate the MN, obtain the HoA and create the
needed security associations.

• Once all the IKEv2 exchanges have been performed, ike2d-mn sends a “HoA response”
message to the MIPL daemon containing the new assigned address.

MIPL and ike2d-mn communicates by the use of the Ma interface. Ma is an inter process
interface implemented using a UDP socket, used to trigger the ike2d-mn daemon in order to
perform the IKEv2 exchanges. Within this trigger message the MIPL daemon communicates the
IPv6 and IPv4 Home Agent addresses (IPv4 HA address is included in case of Interworking
enabled functionalities, see section 2.1.5.1.2), addresses previously obtained (through EAP or
DNS) with which the MN has to perform the IKEv2 negotiation. Additionally, the MIPL daemon
can also indicate to ike2d-mn the PSK to be used when the IKEv2-PSK optimization is desired.
Within the response ike2d-mn communicates to MIPL the Home Address (HoA) assigned to the
MN during the IKEv2 exchange. The hypothesis is that the ike2d-mn is started before MIPL.

The MIPL Configuration message has the following format (Figure 2-27).

IPv4 HA Address

0 8 16 24 31

IPv6 HA AddressType

Pre-Shared key…

Figure 2-27 MIPL Configuration message

The Type field is one octet, and indicates the type of MIPL Configuration message. The types
used by this interface are:

• 4 – HoA Request: sent by MIPL to OpenIKEv2; it triggers the IKEv2 exchange with the
specified HA.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 36 of 153

o Address = HA address.

o Pre-shared key = Pre-shared key to be used (only if IKEv2-PSK optimization is
selected).

• 5 – HoA Reply: sent by OpenIKEv2 to MIPL and used to deliver the HoA.

o Address = HoA.

o Pre-shared key = Not included

The rules that the MIPL and the OpenIKEv2 modules have to observe are:

• As soon as MIPL daemon knows the HA addresses, it sends to OpenIKEv2 the HoA
Request inserting the just obtained HA addresses and the PSK to be used if IKEv2-PSK
optimization is desired.

• When the OpenIKEv2 daemon receives the HoA Request it starts the IKEv2 exchange
with the suitable HA address (the IPv6 one if the MN is connected to an IPv6 network,
the IPv4 one vice versa) taken from the Request.

• When the OpenIKEv2 daemon obtains the HoA it sends the HoA Reply message to the
MIPL daemon.

• When MIPL daemon receives the HoA Reply it sets up the Secure Policy Database
(SPD) using the HoA received and sends the first BU.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 37 of 153

Start

Wa it for HoA

Go ahead
[HoA, HA addr]

Start

Wait fo r
HoA Req

Wait for
HoA

Obtain HA addr
through DHCP or EAP

Send to OpenIKEv2
HoA Request [HA addr]

Receive from OpenIKEv2
HoA Reply [HoA]

MIPL

Start IKEv2 with HA
[HA addr]

Receive from MIPL
HoA Request [HA addr]

Obtained HoA

Send to MIPL
HoA Reply [HoA]

Ikev2-mn

Figure 2-28 Interaction between MIPL and ike2d-mn

The ike2d-mn daemon communicates with the HA over the Pa interface. Pa is a network
interface between the MN and the HA using the IKEv2 protocol. The process has the following
steps, illustrated in Figure 2-29 (note that the figure only depicts the case with EAP
authentication):

MN MSA-AAAHA

1-1. IKE_SA_INIT

1-2. HDR, SK {IDi, [CERTREQ,] [IDr,]
CP(CFG_REQUEST), SAi2, TSi, TSr} 1-3. DER (EAP-Response)

1-4. DEA (EAP-Request)1-5. HDR, SK {IDr, [CERT,]
AUTH, EAP}

1-6. HRD, SK {EAP}
1-7. DER (EAP-Response)

1-8. DEA (EAP-Request)
1-9. HDR, SK {EAP-Request}

1-10. HRD, SK {EAP-Response}
1-11. DER (EAP-Response)

1-12. DEA (EAP-Success)
1-13. HDR, SK {EAP-Success}

1-14. HDR, SK {AUTH}

1-15. HDR, SK {AUTH, CP(CFG_REPLY), SAr2, TSi, TSr}

1. IKEv2 (HoA assignment)

1-16. CREATE_CHILD_SA

Figure 2-29 IKEv2 exchanges (EAP authentication)

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 38 of 153

• The ike2d-mn client performs an IKE_SA_INIT exchange with the HA, to derive
cryptographic material for the IKE SA (step 1-1)

• The ike2d-mn client sends the IKE_AUTH request message including its identity, the
desired authentication method (EAP or PSK) and the request for the assignation of a
remote internal address (in the CP payload) (step 1-2).

• If EAP authentication is selected, the HA’s OpenIKEv2 server acts as an EAP pass-
through, forwarding the EAP packets between the MN and the AAA server and vice-
versa, using the interface Pg and IKE_AUTH messages for EAP transport (steps 1-3 to 1-
13).

• If PSK authentication is selected, then the HA’s OpenIKEv2 server tries to retrieve the
PSK to be used from the MSA-AAA, using the Pl interface.

• Once the MN is authenticated, the HA’s OpenIKEv2 server obtains a HoA from the
internal address pool, stores it in the HoAs file using the Hc interface and sends it to the
MN (using the CP payload) in the last IKE_AUTH message. As result of the whole
IKE_AUTH exchange, the first Ipsec SA is established (step 1-15)

• After that, OpenIKEv2 creates all the remaining Ipsec Sas needed to protect the MIPv6
signalling and the traffic between the MN and the HA. In order to do this, the MN
OpenIKEv2 client initiates all the needed CREATE_CHILD_SA exchanges with the HA
(step 1-16).

• The two OpenIKEv2 daemons keep working in order to maintain the Ipsec Sas
(rekeyings, deletions…).

2.1.3.2 Module ike2d-ha (HA)

The HA needs to perform IKEv2 exchanges with the MN:

• To assign the HoA

• To authenticate the MN for MIPv6 service.

This is in order to create the IPsec security associations.

A software module called ike2d-ha has been developed to provide this functionality. This
module makes use of the libopenikev2 and libopenikev2_impl libraries, but including some
modifications to accomplish the additional ENABLE behaviour:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 39 of 153

• A new address configuration method has been implemented in order to obtain the
addresses to be assigned from a special file (called NAI_HoAs file).

• A new EAP server controller has been developed in order to implement an EAP pass-
through authenticator.

• The method to obtain the PSK has been modified in order to retrieve it from the MSA-
AAA server.

• The XFRM IPsec controller has been improved in order to correctly manage the selectors
including the IPv6 Mobility Header.

• The standard behaviour when assigning a new address has been modified since there is
no need to install any dynamic policy in the SPD (MIPL has done this already).

This module communicates with the MN by using the interface Pa (already described in the
previous paragraph). In order to perform the MN authentication, the daemon uses the interfaces
Pg (for EAP authentication) and Pl (for PSK authentication) with the MSA-AAA server.

Pg is a network interface between the HA and the MSA-AAA using the Diameter EAP
Application. This interface is used to perform the MN authentication only (since the
authorization is initiated by MIPL upon receiving a Binding Update). There are three involved
roles: the User (ike2d-ha), the NAS (ike2d-ha) and the Server (msad).

The HA starts the application by sending a Diameter-EAP-Request (DER) message containing
an Identity EAP-Response with the MN identity (extracted from the IKEv2 IDi payload). After
that, the HA acts as an EAP pass-through, forwarding the EAP packets from the MN to the
MSA-AAA and the other way around. The EAP packets between the MN and the HA are
transported using EAP payloads into IKE_AUTH messages. The EAP packets between the MN
and the MSA-AAA are transported using EAP-Payload AVPs into Diameter-EAP-
Request/Diameter-EAP-Response messages.

The EAP authentication may take more than one roundtrip, depending on the used EAP method.
In addition, the selected EAP method might generate an EAP-Master-Session-Key as result of a
successful authentication. When this key is generated, OpenIKEv2 (in both MN and HA) will
use this key to sign the AUTH payload in the last messages of the IKE_AUTH exchange.

Pl is a network interface between the HA and the MSA-AAA using the NASREQ Diameter
Application. This interface is used to retrieve the MN pre-shared key from the MSA-AAA, in
order to authenticate the user.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 40 of 153

The message flow for the case of IKEv2 in PSK mode is depicted in Figure 2-30. The MN
accesses the network and performs EAP authentication (step 1); then, it derives a key for IKEv2
shared with its AAA server (step 2).

MN MSA-AAAHA

2. Key derivation (MIPv6-USRK,
IKEv2-PSK)

2. Key derivation (MIPv6-USRK,
IKEv2-PSK)

3-1. IKE_SA_INIT

3-2. HDR, SK {IDi, [CERT], [CERTREQ], [IDr], AUTH, SAi2, TSi, TSr}

6-1. HDR, SK {IDr, [CERT], AUTH, SAr2, TSi, TSr}

4-1. AA-Request(User-Name AVP)

5. Verify AUTH payload and
generate response

1. Network Access Phase (EAP exchange)

Security Association Set up

4-2. AA-Answer (User-Name AVP, IKEv2-PSK AVP,
IKEv2-PSK-Lifetime AVP, IKEv2-PSK-Name AVP)

Figure 2-30 Message flow for IKEv2 in PSK mode

The MN and the HA start the interaction with the IKE_SA_INIT exchange (step 3-1) used to
negotiate cryptographic algorithm, nonces and Diffie-Hellman parameters. The next phase
(IKE_AUTH) authenticates the previous messages and exchanges identities and certificates. In
this phase MN and HA mutually authenticate each other. In the first message of this phase (step
3-2) the MN inserts the AUTH payload calculated with the shared key derived from EAP. The
HA needs to retrieve the key from the AAA server in order to verify this payload. To this end it
sends to the AAA server a AA-Request message [RFC4005] with Auth-Request-Type set to
AUTHENTICATE_ONLY since this exchange will only authenticate the MN and does not
authorize the MIPv6 service. The HA must insert in the AA-Request message the User-Name
AVP filled with the IDi identity from the IKEv2 message.

The AAA server receives the request and, based on the given identity, retrieves the IKEv2 pre-
shared key previously derived from EAP. It then sends the corresponding AA-Answer (steps 4-1
and 4-2) containing the requested key (IKEv2-PSK AVP), the corresponding lifetime and key
name (IKEv2-PSK-Lifetime AVP and IKEv2-PSK-Name AVP) and the identity (User-Name
AVP) that the HA must use to send the subsequent MIPv6 Authorization Requests (MAR), so
that the MSA AAA server can map the request to the right MN.

The HA, having the key, can verify the AUTH payload and generate the corresponding response
terminating the IKE_AUTH exchange (step 6-1).

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 41 of 153

The ike2d-ha daemon also communicates with the MIPL module, by the use of the interface Hc.
This interface is implemented using a shared file (NAI-HoAs). The file is a text file composed by
two columns one containing the HoA and one that may contain the user’s NAI, each row
represents an assignable HoA. If a NAI is present in the second column it means that the HoA
has been assigned.

2001:6b8:20:1843:0:0:0:1
2001:6b8:20:1843:0:0:0:2 user1@enable.org
2001:6b8:20:1843:0:0:0:3
2001:6b8:20:1843:0:0:0:4
2001:6b8:20:1843:0:0:0:5
2001:6b8:20:1843:0:0:0:6 user2@enable.org
2001:6b8:20:1843:0:0:0:7

NAI-HoAs.txt

HoAs assigned

Figure 2-31 NAI-HoAs file example

When MIPL is started on the HA, it reads the standard configuration file which specifies the
location of the NAI-HoAs file. After this reading operation of the configuration file, the MIPL
daemon reads the NAI-HoAs file in order to initialise the SPD. MIPL has to insert in the SPD an
entry for each assignable HoA.

The same file (NAI-HoAs) is used by MIPL to obtain the NAI associated to the HoA received
within a BU. The MIPL module searches into the NAI-HoA file to find the NAI associated to the
HoA received.

When ike2d-ha needs to assign a HoA, it reads the NAI-HoAs file looking for an unassigned
HoA (a HoA is unassigned if its second column is empty). If any free HoA is found, ike2d-ha
assigns the HoA and writes the MN NAI in its second column to ensure that MIPL can map the
HoA with the NAI in order to authorise the mobility service for that MN.

Rules for the access to the file:

• When ike2d-ha needs to assign a HoA, it reads the NAI-HoAs file looking for an
unassigned HoA. If any free HoA is found, ike2d-ha writes the MN NAI into its second
column.

• When MIPL receives the first Binding Update from a new user, it search the NAI
associated to the received HoA within the NAI-HoA file.

• When the MIPL recovers the NAI, it starts the user authorization using that NAI.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 42 of 153

• The NAI is stored within the new BC entry created in order to be able to re-authenticate
the user without accessing again to the NAI-HoA file.

Wait for BU
Wait for HoA
assignation

Receive BU [HoA]

MIPL Ikev2-ha

BCE new?

BCE lifetime
update

Searching

Perform Service
Authorization [NAI]

New HoA assigned

Search for NAI on
NAI-HoA file [HoA]

NAI found NAI not found

Send BA
[status=128]

Write the NAI
within NAI-HoA file

Yes

No

Figure 2-32 Interaction between MIPL and ike2d-ha

2.1.3.3 Module diametermip6 (HA)

This module, called diametermip6, consists of an OpenDiameter peer intended to perform the
MIPv6 service authorization on behalf of MIPL module. It is needed because OpenDiameter
libraries cannot be directly used with MIPL, since they are written in C++ code but MIPL is
written in C.

In order to communicate with the MIPL module it uses the Hd interface. Hd is an inter process
interface implemented using a UDP socket.

Messages defined for this interface are:

• User Authorization Request (Figure 2-33): message sent by MIPL to OpenDiameter
client for Mobile User’s authorization of MIP6 service.

0 8 16 24 31

Identifier …Type = 1 MN Identifier Type

Figure 2-33 User Authorization Request

o MN Identifier Type = 1 (NAI).

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 43 of 153

o Identifier = NAI.

• User Authorization Reply (Figure 2-34): message sent by OpenDiameter client to MIPL,
communicates the result of the User’s authorization of MIP6 service

0 8 16 24 31

LifetimeType = 2

Identifier …

Result Code = 0 (fail) MN Identifier Type

Figure 2-34 User Authorization Reply

o Result Code = 1 (on success), 0 (on failure).

o MN Identifier Type = 1 (NAI).

o Identifier = NAI.

o Lifetime = user authorization lifetime.

To perform the MIPv6 service authorization, the diametermip6 module uses the Pf interface to
communicate with the MSA-AAA server. This interface is based on DIAMETER protocol. The
two peers are the Home Agent, which acts as Diameter client, and the Home AAA Server (MSA)
that acts as the Diameter server. On the Home Agent, the Diameter application is triggered by
the reception of the first Binding Update message received from a MN: when the BU arrives, the
Diameter client asks the MSA server whether the user is authorised for the MIPv6 service or not.
If authorisation succeeds, the Home Agent sends a Binding Acknowledgement with status 0
(Binding Update accepted) to the mobile user; otherwise, if authorisation fails, the Home Agent
issues a Binding Acknowledgement message with status code 129 (Administratively prohibited).

The Diameter application requests and answers have the Auth-Request-Type AVP set to
AUTHORIZE_ONLY. Some mandatory AVPs have been defined for request messages:

• UserName AVP to carry the user identity (NAIs)

• MN-HomeAddress AVP to inform the AAAH server of the binding Home Address of the
user to allow DNS updates (made by AAAH on behalf of HA to fit also scenarios in
which HA doesn’t have a security association with user’s home domain DNS).

Answer messages contain the result code (success or failure) and authorisation AVPs (at least the
authorisation lifetime).

The behaviour of these modules is the following:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 44 of 153

• When MIPL receives the first Binding Update from a new user, MIPL obtains the NAI
associated to the received HoA from the NAI-HoA file. MIPL sends a User Auth. Req. to
diametermip6 inserting the obtained mobile node’s NAI into MN_ID_NAI field.

• When diametermip6 receives a User Auth. Req., it performs user authorization contacting
a backend AAA server:

o 1. In case of success diametermip6 sends to MIPL a User Auth. Rep. with
result_code set to 1 and the NAI of authorized user into MN_ID_NAI field to let
MIPL match this success message with the pending request. The MIPL stores the
NAI within the BC.

o 2. In the case of authorization failure, diametermip6 sends back to MIPL a User
Auth. Rep. message with result_code 0.

• When the authorization timer for a user’s Binding Cache Entry (BCE) expires, MIPL
sends a User Auth. Req. to diametermip6 with user’s NAI, previously obtained and
stored within the BCE, into MN_ID_NAI field to re-authorise the user; then Open
Diameter sends back a User Auth. Rep. message with the answer of the Diameter server.

• When BCE lifetime expires the MIPL delete the BCE.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 45 of 153

Wait for BU

Wait for REQReceive BU [HoA]

MIPL diametermip6

Server answer
with success

Wait for a server reply

BCE new?

BCE lifetime
update

Send to OpenDiameter
User Auth. Req. [NAI]

Wait for a
Diameter reply

Receive from Diameter
User Auth. Rep. [suc.]

Receive from Diameter
User Auth. Rep. [fail.]

BU creation
Authorization
timer expires

Delete BCE [HoA]Authorization
timer update

NAI recovery [HoA]

Receive from MIPL
User Auth. Req. [NAI]

Ask to the OpenDiameter server
the user’s autorization [NAI]

Server answer
with failure

Send to MIPL
User Auth. Rep. [suc.]

Send to MIPL
User Auth. Rep. [fail.]

BCE lifetime
expires

NAI obtained?

Yes

No

Yes

No

Figure 2-35 Interaction between MIPL and diametermip6

2.1.3.4 Module msad (MSA)

All the Open Diameter code used in ENABLE is based on Open Diameter 1.0.7-h. This release
contains the following libraries:

• Framework. Contains the general state machine framework classes, as well as tasks, jobs,
queues and other classes used by the base protocol.

• Libdiamparser. This library contains the classes used to parse diameter messages,
including headers and AVPs.

• Libdiameter. This is the library that implements the Diameter Base Protocol.

• Libdiameternasreq. Implements the Diameter NAS application. This library is used
together with libdiametereap and libeap to perform the MIPv6 authentication and
authorization and to integrate Open Diameter within Openikev2.

• Libdiametereap. Implements the Diameter EAP application.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 46 of 153

• Libeap. Implements the EAP state machines and EAP messages, using functionality from
the OpenSSL library.

A customized diameter daemon has been developed in order to integrate Open Diameter with
OpenIKEv2. The MSA Open Diameter server (msad) takes care of the EAP-based authentication
(interface Pg), pre-shared key providing when integrated scenario is being used (interface Pl) and
MIPv6 service authorization (interface Pf).

In order to do this, two different databases are deployed:

• OpenDiameter IKEv2 DB: used to authenticate the user and to authorise the SA creation
between the HA and the MN.

• OpenDiameter MIPv6 DB: used to authorise the MIPv6 service.

The OpenDiameter MIPv6 DB and OpenDiameter IKEv2 DB are implemented through the same
XML file containing users’ profile for MIPv6 authentication and authorization. This file is
named “aaa_user_db.xml” and it is compliant with XML version 1.0 W3C recommendation
[W3C]. An XSD file is associated to that file, named “aaa_user_db.xsd”, containing the schema
of the XML file. The msad daemon uses the Ab interface to store and retrieve data from the
MIPv6/IKEv2 DBs. Currently this interface is based on direct file access to the
“aaa_user_db.xml” file, although it may be modified in the future to use a TCP socket in order to
fetch the data from a MySQL database via SQL queries

Below there is an example of the user DB XML file including only the sub elements used by the
authorization application since the entries for EAP authentication are the same ones used by the
standard OpenDiameter EAP application.

<?xml version="1.0" encoding="UTF-8"?>
<user_db xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation='aaa_user_db.xsd'>

<user_entry>
<name_match>luca.battistoni@telecomitalia.it</name_match>
<authz_lifetime>60</authz_lifetime>

</user_entry>

<user_entry>
<name_match>michele.lamonaca@telecomitalia.it</name_match>
<authz_lifetime>100</authz_lifetime>

</user_entry>

</user_db>

aaa_user_db.xml

Figure 2-36 Example of user DB XML file

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 47 of 153

The main element (users’ database) is bounded by tags <user_db> and </user_db>. The users
DB is divided into sub elements, one for each the user’s entry (<user_entry> … </user_entry>).
The user entry contains two sub elements:

• name_match: this element contains the NAI of the user.

• authz_lifetime: this element stores the lifetime associated with the user authorization, the
lifetime is expressed in seconds.

The XSD file associated to the XML user DB file is shown below.

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="user_entry_type">
<xs:sequence>

<xs:element name="name_match" type="xs:string" />
<xs:element name="authz_lifetime" type="xs:integer" />

</xs:sequence>
</xs:complexType>

<xs:element name="user_db">
<xs:complexType>

<xs:sequence>
<xs:element name="user_entry"

type="user_entry_type"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

aaa_user_db.xsd

Figure 2-37 Example of XML schema file

2.1.4 Home Agent load sharing

The HA load sharing process developed in ENABLE is described in detail in [ENA-D1.2],
section 3, and [ENA-D6.1], section 3.2.3. In this section, the focus is the HA load sharing
prototype implementation.

2.1.4.1 Overview

Figure 2-38 illustrates the message flow diagram of the HA load sharing mechanism. The HA-
DB Manager entity combines two entities: the HA-Manager which is responsible for retrieving

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 48 of 153

load parameters from the home agents and the HA-DB, a database in which all HA parameters
relevant for load sharing are stored.

After start up of the HA-DB Manager, the HA-DB is initialized and the static parameters are set,
which are for each HA its IP address (IP_HA), the maximum home registrations (Max_Reg), the
maximum bandwidth on its interface (Max_Band), the ID of the Region (Region_ID) the home
agent is located in, the maintenance flag (M_Flag), and the polling interval (HA_Ptime).

With an interval of HA_Ptime, the HA-Manager process periodically queries each HA (HA_1, ..
HA_i) via SNMP for the current selection parameters (number of home registrations and
currently consumed average bandwidth). The HA-Manager normalizes the parameters, and
stores the parameters in the database HA-DB via SQL statements.

With an interval of HA-DB_Ptime, the HA Select process on the MSP-AAA entity queries the
HA-DB via SQL for the current normalized parameters and stores them in its local Home-Agent-
Parameter-Matrix. Having these selection parameters locally speeds up the selection process.

The HA Select process also provides an interface for other processes to invoke the selection
mechanism. The requesting process sends a Select HA Request message towards the HA Select
process, containing several parameters that specify and adjust the selection process. The HA
Select process evaluates the load of each HA according to the values given in its local Home-
Agent-Parameter-Matrix and returns a message Select HA Response that contains the IPv6
address of the selected HA.

HA_iHA_1
HA-DB Manager

HA-Manager HA-DB

SQL SELECT

SQL SELECT

In
te

rv
al

l
H

A
_P

ti
m

e

In
te

rv
al

l
H

A
-D

B_
Pt

im
e

MSP-AAA
HA Select

SNMP GETBULK

Select HA Request

Select HA Response

SQL INSERT

SQL INSERT

DB Init

SNMP GETBULK

SNMP GETBULK
SNMP GETBULK

HA selection

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 49 of 153

Figure 2-38: Message flow for HA load sharing

Figure 2-39 illustrates the components and interfaces from the reference architecture involved in
realizing the HA load sharing implementation. Since HA load sharing is implemented for the
integrated scenario, ASA and MSA are the same entity and the interface Ac connects the
Freeradius instance and the HA Select, i.e. the Freeradius instance communicates with the HA
Select process via the Select HA Request and Select HA Response messages.

* In an integrated scenario this two User DB could be the same one and the interface Ac is present

Ma

MN HA

MSAASA

HA-DB
manager

DNS

OpenIKEv2

MIPL

Mb

OpenIKEv2/
Diameter-EAP

MIPL

NETSNMPHA Manager

HA DB

Users DB*

Freeradius HA select

Users DB*

OpenDiameter

Ph

Pe

Da

Pa

Pb

Pc

Pd

Hc

Hd
He

Pf Pg

Ab

Ac

DCPv6
server

DHCPv6
client

Xsupplicant

Pi

Pj

Aa

DHCPv6
relay

Authenticator

Pk

Pl

OpenDiameter

NAS

Figure 2-39: HA load sharing components and interface in the reference architecture

2.1.4.2 Module NETSNMP and interface He

Since being the standard network management protocol for monitoring and controlling network
nodes, SNMP has been selected for retrieving selection parameters from the home agents.
Therefore, a SNMP agent has to be implemented in each HA. The SNMP agent provided by the
NETSNMP package from http://net-snmp.sourceforge.net/ has been used (net-snmp-5.3.1),
denoted as NETSNMP module.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 50 of 153

One selection parameter that has to be retrieved from the home agents is the number of current
home registrations. Therefore, the interface He between the NETSNMP agent and the MIPL
process had to be realized. Since SNMP agents read from MIBs and neither the MIPv6 MIB has
been implemented nor the required object is present in the current MIPv6 MIB specification, the
required MIB object has been specified and implemented in ENABLE. The object denoted as
REGISTRATION is linked within the enterprises.netSNMP.netSnmpExamples subtree to the
OID 1.3.6.1.4.1.8072.2.5.1.

A variable that stores the current number of home registrations is available in the MIPL file
bcache.c, denoted as bcache_count. The file bcache.c was modified in order to store the variable
bcache_count in the MIB object REGISTRATION.

Besides the number of home registrations the average consumed bandwidth on the HA interface
is used as a selection parameter, which is calculated by using several available MIB objects
defined in [RFC 1213]:

o IfInOctets (OID: 1.3.6.1.2.1.2.2.1.10): This MIB object represents the count of the
inbound octets of traffic pertaining to the chosen Interface.

o IfOutOctets (OID: 1.3.6.1.2.1.2.2.1.16): The MIB object gives the total number of
bytes sent on the chosen interface.

From these MIB objects the HA-Manager can calculate the average, currently consumed
bandwidth using the following algorithm:

[]

() ()
() ()

() ()1
1

1

_*

8*max

−−=∆

−−=∆

−−=∆

∆

∆+∆
=

ttimettimetime

tsifOutOctettsifOutOctetsifOutOctet

tifInOctetstifInOctetsifInOctets

with

BandMaxtime

sifOutOctetifInOctets
Bandwidth

2.1.4.3 HA-DB module

The HA-DB module is implemented on the HA-DB Manager entity. The HA database (HA-DB)
is realized in MySQL (Debian package “mysql-5.0” combined with the “mysql-connector-java-
3.1.13” software). MySQL already supports the standard computer language: SQL, to provide
data handling. For the interface Da to the HA-DB, JDBC is used (see next section). The JDBC
function InitDB() is used to create the database table structure and to import HA parameters to

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 51 of 153

the database that are needed for the load sharing mechanism. The function is executable in a Java
Runtime Environment and extracts line by line a configuration file (mipl-lh.conf). An example of
the configuration file is displayed below:

/etc/mipl-lh.conf

The home agent list:

hip 2001:1b10:1001:2000:0000:0000:0000:0100 mreg 50 mband 10 region 1

hip 2001:1b10:1001:2000:0000:0000:0000:0101 mreg 10 mband 50 region 2

#ENDE
Figure 2-40: mipl-lh.conf

Each relevant row, indexed by the string “hip”, determines at least the IP address, and if required
also the Max_Reg, the Max_Band and the Region_ID value, of a HA that has to be monitored. If
a variable parameter is not set, a default value is set.

Figure 2-41 outlines the content stored in this HA-DB. The content contains for each HA:

• the selection parameters collected on the HA.

• the selection parameters already available on the HA-DB.

• as well as additional parameters required for HA load sharing.

The database is divided into four different tables. The table SELECTION PARAMETER
STATIC contains the static parameters available on HA-DB which are configured by the
administrator. The table SELECTION PARAMETER DYNAMIC contains all dynamic selection
parameters collected periodically from the respective HAs (number of home registration and
current bandwidth consumption). The table ADDITIONAL PARAMETER stores parameters
that are not specifically used as selection parameters but are required for performing load sharing.
These parameters are only relevant for the HA-DB Manager and therefore need not be
transported to the HA Select process on MSP-AAA. The last table CACHE PARAMETER
contains the last interface values needed to calculate the current average consumed bandwidth.

Each data set within these tables is indexed by the unique HA interface address (IP_HA).

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 52 of 153

Database tables

M_FlagRegion_IDIP_HA

SELECTION PARAMETER STATIC

BandwidthRegistrationsIP_HA

SELECTION PARAMETER DYNAMIC

Max_BandMax_RegIP_HA

ADDITIONAL PARAMETER

Systime (t-1)InOctets (t-1)OutOctets (t-1)IP_HA

CACHE PARAMETER

Figure 2-41: Database tables on HA-DB

2.1.4.4 HA Manager Module and interfaces Pc and Da

The HA Manager module is realised in Java and runs on the HA-DB Manager entity. The
Debian Gnu/Linux SARGE operating system and the Java Runtime Environment Version
1_5_0_06 is used on this entity.

The HA Manager uses the SNMP interface Pc to get selection parameters from the NETSNMP
agents running on the home agents. The Pc interface uses a SNMPv2/v3 compatible GETBULK
request that reduces the message overhead by obtaining a bundle of information with only one
request message instead of many individual get request messages. If required, this management
traffic can be secured using the security features of SNMPv3. For the SNMP support, we use
NETSNMP from the sourceforge.net webpage (net-snmp-5.3.1) and we add the Westhawk's Java
SNMP 5.1 stack to query SNMP information per Java code.

The obtained parameters are normalized to values between 0.00 and 1.00, e.g. in case the current
number of home registrations is 1000 and Max_Reg is set to 4000 the normalize value for
Registrations is 0.25. In case a home agent is not reachable, for example as a result of a reboot,
its parameters will be set to 1.00 (the maximum) during normalization. These values are stored in
the HA-DB using the Da interface. The interface is realised in Java and SQL commands are
used to exchange data. The HA Manager process uses SQL INSERT and UPDATE commands,
respectively, to insert and update the parameters of the database HA-DB. Since the HA Manager

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 53 of 153

is realised as a Java process, a HA-DB JDBC interface is used, which is a MySQL compatible
API. (see http://java.sun.com/javase/technologies/database/index.jsp).

2.1.4.5 HA Select module and interfaces Pd and Ac

The HA Select module is a Java process that runs on MSP (here MSP = MSA = MASA). This
process periodically queries the HA-DB for the current selection parameters via the Pd interface.
The interface Pd between the HA-DB and the HA Select process on MSP-AAA is realized via
SQL commands, especially the HA Select process uses SQL SELECT queries to retrieve the
data from the database. Since the HA Select process is realised in Java, the HA-DB JDBC
interface is used, which is a MySQL compatible API.

Upon request via the Ac interface, the HA Select module starts the selection process. The
interface Ac is a local interface between the Freeradius instance and the HA Select instance on
the MASA entity. The interface is realized as UDP socket, using port 5100, which has been
chosen arbitrarily and should not conflict with other applications. The Freeradius instance sends
a message Select HA Request to the HA Select instance. The HA Select instance selects a HA
and sends back a message Select HA Response that contains the IPv6 address of the selected HA.

Messages defined for this Ac interface are:

• Select HA Request (Figure 2-42): message sent by the invoking process (e.g. the
Freeradius instance) to the HA Select instance:

0 8 16 24 31

W_FlagSequence Nr

Weighting factors ...

Reg_ID On_Demand_Flag

Figure 2-42: Select HA Request

o Sequence Nr (1 byte): The Sequence Nr is replied back in the Select HA
Response message in order to relate request and response message.

o Reg_ID (1 byte): Region ID of the region within scope. A value of 0 signals that
all regions are relevant.

o On_Demand_Flag (1 byte): If this value is set to 1, this signals to the HA Select
process to update the parameter matrix. The default value is 0.

o W_Flag (1 byte): This value signals how many weighting parameters are
following. A value of 0 indicates that no weighting factor follows and that the

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 54 of 153

load calculation should be done by using default weighting factors configured on
the MSP-AAA.

o Weighting factors: This field contains a sequence of W_Flag weighting factors,
each 2 bytes long.

• Select HA Response (Figure 2-43): message sent by the HA Select process to the
invoking process (e.g. the Freeradius instance):

0 8 16 24 31

HA IPv6 AddressSequence Nr

Figure 2-43: Select HA Response

o Sequence Nr (1 byte): Sequence number that is taken from the respective Select
HA Request message in order to relate request and response message.

o HA IPv6 address (16 byte): IPv6 address of the selected HA.

For the selection of a HA, the HA Select module uses the parameter of its local Home-Agent-
Parameter-Matrix. Thereby, the module does not take into account HAs that have the
maintenance flag (M_Flag) set and, in the case were the Region_ID parameter in the Select HA
Request message is not zero, considers only HAs with an appropriate Region_ID.

For each remaining HA, the respective current load is calculated via the following formula:

loadHAi = W1 * Pi1 + W2 * Pi2 + ... + Wn * Pin

Pi1, … , Pin are the HA selection parameters for HA_i

W1, … ,Wn are the weighting factors.

The least loaded HA is selected and its IP address (IP_HA) is returned in the Select HA Response
message.

2.1.5 Interworking with IPv4 networks

Since basic MIPv6 [RFC3775] is only standardized to support IPv6, in the case were the access
network is only IPv4 capable some extra work is required in order to allow the MN run MIPv6.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 55 of 153

Deliverable [ENA-D2.2] has analyzed different alternatives for this scenario and two of them
have been developed within the ENABLE project: DSMIPv6 and Softwires-based tunnelling.

2.1.5.1 DSMIP6

In these sub-sections we describe the DSMIP6 development carried out within the ENABLE
project.

2.1.5.1.1 DSMIP6 Overview

Mobile IPv6 allows a Mobile Node (MN) to roam between IPv6 only networks. Interworking
with IPv4 networks was implemented in order to allow within IPv4 networks:

• the exchange of MIPv6 signalling messages;
• IPv6 data transportation.

For a theoretical description of the solution we refer to the [ENA-D1.1], section 5.6.2. Here we
describe the effective implemented solution for the Dual Stack MN and its movement detection
and Dual Stack HA, extending what is stated in [ENA-D6.1], section 3.2.4.

2.1.5.1.2 Dual Stack MN and HA

A dual stacked MN has the ability to send and receive MIPv6 signalling messages and IPv6 data
packets while it is attached within an IPv4 network.

A requirement for this approach is the presence of a HA and a Home network which is dual
stacked. This assumption is needed since this solution is based on the tunnelling of IPv6 packets,
for both signalling and/or data, within an IPv6-in-IPv4 tunnel, the end points of the tunnel being
the MN and the HA.

The format of the Binding Update (BU) and Binding Acknowledge (BA) messages will depend
on the type of access network the MN is attached to. We will refer to the case of a MN attached
to an IPv4 network and configured with an IPv4 public address, as assumed in [ENA-D6.1],
section 3.2.4.1. In our deployment the message format is shown in Figure 2-44:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 56 of 153

IPv4 CoA Outer Header
IPv4IPv4 HA addr

IPv4-mapped IPv6 CoA

IPv6 HA addr

Home Addr Dest. Opt.: HoA

ESP

Mobility Header

IPv4 CoA

IPv4 HA addr

IPv4-mapped IPv6 CoA

IPv6 HA addr

Routing Header: HoA

ESP

Mobility Header

Inner Header
IPv6

ESP transport mode

BU BA

 Figure 2-44: BU/BA messages within IPv4 only public network

The destination address of the outer header is the IPv4 address of the HA and the source address
is the IPv4 public address that the MN has. In the inner packet there is a standard IPv6 BU/BA
message in which an IPv6 CoA is announced. Since the MN owns only an IPv4 CoA, the IPv6
CoA field is filled with the IPv4 address represented in the IPv4-mapped IPv6 form.

The processing of the BU containing the registration of the IPv4-mapped IPv6 CoA is the same
as specified within [RFC3775]. When the registration is accepted, the HA creates a new Binding
Cache Entry (BCE) where the CoA address (IPv4-mapped IPv6) is inserted in association with
the IPv6 HoA. Following the standard [RFC3775], once the BCE is inserted, the HA replies to
the MN sending a BA. The destination address of the BA is the IPv4-mapped IPv6 address. The
HA, recognising these types of addresses, sends the BA through the IPv6-in-IPv4 tunnel using as
destination address the IPv4 address of the MN and as source address his IPv4 address. Upon
receiving this BA, the MN updates the Binding Update List (BUL) entry referring to the CoA
IPv4-mapped IPv6 contained within the BA.

Hence, all packets addressed to the mobile node's IPv6 home address will be encapsulated in an
IPv4 packet that includes the home agent's IPv4 address in the header's source address field and
the mobile node's IPv4 care-of address in the destination address field.

2.1.5.1.3 Movement detection

The Movement Detection (MD) algorithm was implemented based on Neighbour Discovery
procedures, within IPv6 access networks, and on Dynamic Host Configuration Protocol (DHCP),
within IPv4-only access networks.

Since in the considered scenario the MN is able to move among both IPv6 and IPv4 subnets, the
movement detection procedure has to be able, in both cases, to understand when the MN changes
IP subnet in order to trigger the binding management procedure.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 57 of 153

In order to define an algorithm we made some assumptions:
• when an interface of the MN is attached to an IPv6 network, then stateless auto-

configuration is used [RFC2462] to obtain a global IPv6 address and the Neighbour
Discovery procedure [RFC2461] to probe the reachability of the default router;

• when an interface of the MN is attached to an IPv4 network, then the DCHP protocol
[RFC2131] is used to configure a public IPv4 address and the ARP protocol to probe the
reachability of the default router.

This algorithm has been designed to support MNs that own multiple interfaces. A preference
value is assigned to each interface to select which interface must be used when two or more
interfaces have connectivity. If an interface has both IPv4 and IPv6 connectivity the IPv6
protocol is the preferred one.

2.1.5.1.4 Kernel development

The MN and HA required a fix to the kernel for the proper handling of IPv4-mapped IPv6 CoAs
in MIPv6 messages. The changes were made in the file net/ipv6/xfrm6_policy.c and collected
into a patch displayed in Figure 2-45.

net/ipv6/xfrm6_policy.c
2007/07/30 09:22:31+01:00
changes for the IPv4 Interworking
#
--- a/net/ipv6/xfrm6_policy.c 2007-07-30 11:14:51.000000000 +0200
+++ b/net/ipv6/xfrm6_policy.c 2007-07-30 11:15:31.000000000 +0200
@@ -173,8 +173,10 @@

tunnel = 1;
break;

case IPPROTO_DSTOPTS:
+ if (!(ipv6_addr_type((struct in6_addr *)xfrm[i]->coaddr)&IPV6_ADDR_MAPPED)) {

local = (struct in6_addr*)xfrm[i]->coaddr;
tunnel = 1;

+ }
break;

default:
break;

Figure 2-45: Kernel patch for IPv4 Interworking

This patch has to be applied to a MIPL ready kernel 2.6.16, i.e. a vanilla 2.6.16 kernel previously
patched with standard MIPL 2.0.2 patch.

2.1.5.1.5 MIPL userspace development

The new functions and routines needed to implement the movement detection algorithm were
derived from the MIPL original ones, while the original data structures were modified with
suitable fields for IPv4 data.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 58 of 153

In particular, management of tunnels between MN and HA was extended with the use of IPv6-
in-IPv4 tunnels, which prototyped under Linux has the named sit0. This type of tunnel is
required for MIPL signalling between the MN and HA and IPv6 traffic exchange between MN
and CNs forwarded by HA.

All modifications and enhancements can be turned on or switched off via the MIPL
configuration file.

2.1.5.1.6 MN development

A DHCP client was embedded into the MIPL userspace to manage IPv4 connectivity and
perform the movement detection algorithm. During the configuration of internal MIPL data
structures for mobility interfaces (i.e. interfaces used by MIPL and included into the MIPL
configuration file), a DHCP thread is created per mobility interface to verify IPv4 connectivity
via DHCPDISCOVER broadcast messages. Once an IPv4 address is obtained and configured on
the interface, meaning that the MN is in an IPv4 or DS network, the thread starts and manages
the timer for ARP requests to probe IPv4 router reachability.

In the MN configuration file two new tokens were added, shown in bold characters in Figure
2-46 below:

…

Bootstrap enabled;
HomeAgentName “ha1.ist-enable.tilab.com";

InterworkingIPv4 enabled;

Ikev2Psk "";

MnHomeLink “ath0" {
HomeAgentAddress ::;
HomeAddress 2001:6b8:20:186::1:0:ea1/64;
HomeAgentAddressIPv4 10.0.0.0;

}
…

Figure 2-46: Example of MN’s configuration file with Interworking

InterworkingIPv4 enables interworking capabilities, while HomeAgentAddressIPv4 is used to
initialise the IPv4 HA address field during parsing of the configuration file at MIPL start up.

2.1.5.1.7 HA development

The HA sets up an IPv6-in-IPv4 (sit) tunnel at bootstrap which is between its own local IPv4
address and any remote IPv4 address, to receive BUs sent from Interworking enabled MNs.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 59 of 153

The Binding Cache management was modified to deal with such BUs. If an Interworking
enabled MN sends a BU from an IPv4 network, HA sets up a new sit tunnel between its own
local IPv4 address and the MN’s remote IPv4 address, inferred from the IPv4-mapped IPv6 CoA.
The new dedicated tunnel is then used either for MIPv6 signalling or for traffic forwarding.

When a MN performs a handover from an IPv4 network to an IPv6 network, it sends a BU with
the new IPv6 CoA: then the HA modifies the Binding Cache Entry according to new CoA,
deletes the sit tunnel and sets up a new IPv6-in-IPv6 tunnel between itself and the MN as in the
MIPL standard. Creation and deletion of tunnels is due not to have more than one tunnel active
per MN. The behaviour is the other way round when MN roams from an IPv6 network to an
IPv4 one.

To enable Interworking functionalities, the HA configuration file needs two new tokens,
highlighted in bold in Figure 2-47 below. The former is the same as in the MN to enable
Interworking, the latter is the IPv4 address of the HA’s interface used for MIPv6.

…

HaveAuthorization disabled;
HoAsFile "/etc/enable/hoas.txt";

Interworking IPv4
InterworkingIPv4 enabled;
HAaddressIPv4 163.162.186.101;

##
IPsec configuration

…

Figure 2-47: Example of HA’s configuration file with Interworking

2.1.5.2 Softwires

In the remaining sub-sections we describe the development of the Softwires-based tunnelling
solution for MIPv6 IPv4 interworking.

2.1.5.2.1 Softwires overview

As explained in [ENA-D2.2], the softwires approach is a solution that proposes to get IPv6
connectivity firstly by building an IPv6 tunnel and then secondly by running mobility over that
tunnel. The protocol for making the IPv6 tunnel is called softwires [draft-ietf-softwire-hs-
framework-l2tpv2] which standardizes the discovery, control and encapsulation methods for
connecting IPv4 networks across IPv6 networks and IPv6 networks across IPv4 networks in a
way that will support all the possible network scenarios.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 60 of 153

Softwires is currently being standardized on the basis of the use of the L2TPv2 protocol
[RFC2661] (L2TPv3 [RFC3931] will also be supported in the future) so the development done
within the ENABLE project is based on L2TPv2. Specifically, the softwires implementation has
been based on the l2tpd_0.70-pre200311211 and ppp-2.4.32 implementations and modified to be
softwires compliant.

L2TPv2 is designed to transport L2 PPP packets through different networks: i.e. IP, FR and
ATM. However Softwires only applies to IP networks, which is the main scenario which has
been designed for. In the MIPv6 IPv4 interworking context the IPv6 address is provided through
the PPPv6 session [RFC2472] and the final tunnel encapsulation is as depicted in figure 2-48 for
both the control and data channels.

PPP

L2TPv2
header

IPv4 header

MIPv6 payload

IPv6

UDP header

Data channel
encapsulation

(UDP port 1701)

Control channel
encapsulation

(UDP port 1701)

L2TPv2
header

IPv4 header

UDP header

Figure 2-48: Softwires encapsulation in the MIPv6 IPv4 interworking context

As can be seen, softwires provides two channels, one for control (session establishment,
maintenance and tear down) and the other one for data transportation. Once the softwires tunnel
has been configured, all the MIPv6 traffic is sent through the data channel. Both the control and
data channels have different L2TPv2 headers, as defined in [RFC2661].

When Softwires is used, there are two new components and interfaces in the reference
architecture, as shown in figure 2-49.

1 Available from http://ftp.debian.org/debian/pool/main/l/l2tpd/l2tpd_0.70-pre20031121.orig.tar.gz
2 Available from http://sourceforge.net/project/showfiles.php?group_id=44827. The PPP implementation must be

installed before installing Softwires. The PPP implementation must support IPv6.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 61 of 153

Ma

MN HA

MSAASA

HA-DB
manager

DNS

ike2d-mn

MIPL

Mb

ike2d-ha

MIPL

NETSNMPHA Manager

HA DB

Users DB*

Freeradius HA select

Users DB*

msad

Ph

Pe

Da

Pa

Pb

Pc

Pd

Hc

Hd
He

Pf Pg

Ab

Ac

DCPv6
server

DHCPv6
client

Xsupplicant

Pi

Pj

Aa

DHCPv6
relay

Pk
Pl

diametermip6

SC

Pm

SI

Pn

Authenticator

NAS

Figure 2-49: Softwires components and interfaces in the reference architecture

The Softwires modules and interfaces in the reference architecture are marked in red. The
Softwires Initiator (SI) is the component responsible for starting the tunnel creation. When
applying softwires in the MIPv6 IPv4 interworking context, the MN plays the SI role, i.e. IPv6
tunnel initiator. The Softwires Concentrator (SC) is the Tunnel End Point (TEP). It is in charge
of ending the IPv6 tunnel, i.e. extracts the IPv6 packets from the received IPv4 packets and
forwards them to the IPv6 destination. It makes the reciprocate tasks for IPv6 packets sent to the
SI (MN), i.e. it gets the native IPv6 packet, encapsulates it in an IPv4 packet and forwards it to
the SI. In the MIPv6 IPv4 interworking context the SC must be deployed in a dual-stack network
(MSP or Third-Party provider) as stated in [ENA-D2.2].

Using Softwires as MIPv6 IPv4 interworking solution involves five phases as depicted in the
following message flow:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 62 of 153

MN/SI NAS
ASP
AAA SC

3. Softwires tunnel establishment

2. Network access
Authorized

IPv4 connectivity

1. User authen. and Network access authori.

4. IPv6 connectivity

MASA
AAAHA

5. MIPv6 bootstrapping
(depending on the scenario: split, integrated, EAP-available, etc.)

Figure 2-50: Phase required when using Softwires

First of all the MN needs to be authorized to use the access network by providing the proper user
credentials to the ASP-AAA component (steps 1). When the MN is able to use the network
access (steps 2) it only has IPv4 connectivity (IPv4-only network access), so it must setup the
Softwires tunnel in order to get IPv6 connectivity (step 3). Because the softwires-solution
development is only a prototype within the ENABLE project, the SC address is assumed to be
manually configured in the MN/SI. Provisioning the SC address dynamically leads to a
“Softwires bootstrapping” issue which is out of the ENABLE scope, so in this development it is
assumed that the MN/SI is configured properly to contact the SC in order to address the step 3.

After the Softwires tunnel has been configured (see the following sections), the MN has IPv6
connectivity (step 4) and it is ready to bootstrap MIPv6 over the new IPv6 network interface
according to the scenario where it is found (split, integrated, etc.).

2.1.5.2.2 Modules SC and SI and interfaces

Both the SC and the SI is the same piece of software (the binary is called softwiresd), the only
difference is how they are configured to work as, so they will be described together in this
section.

The softwiresd binary is responsible for the L2TPv2 control channel establishment, which is
done through the interface Pm in the figure 2-49. It is also responsible for the L2TPv2 control
session, maintenance and tear down session. Then after the control channel is established, in
order to setup the data channel (Pn in the figure 2-49), the softwiresd daemon calls the pppd

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 63 of 153

daemon which will be in charge of providing the IPv6 connectivity. Finally, once the PPP
session has been successfully established between the SI and the SC, the SI gets a global IPv6
address by using IPv6 auto-configuration.

Softwires tunnel configuration and establishment

The following are the configuration files used in Sofwires:
• l2tpd.conf. Defines how the Softwires will work: i.e. SC or SI. It is found in both the SC

and SI.
• l2tpd.secrets. Stores information for user authentication. It is found in both the SC and

SI.
• ppp.options. Defines specific PPP options for setting up the PPP session. The IPv6

configuration for the softwires tunnel is configured here. It is found in both the SC and SI.
• radvd.conf. Defines the IPv6 network information required for IPv6 auto-configuration

to work through the PPP interface. It is found only in the SC.

The softwiresd binary has the following command syntax:

softwiresd [-c configuration file] [-s secret file]
 [-p pid file] [-D]

The command line options are:

-c configuration file
 Selects a different configuration file from the default
 (typically /etc/softwiresd/l2tpd.conf).
-s secret file
 Selects a different secret file from the default (typically
 /etc/softwiresd/l2tp-secrets).
-p pid file
 Selects a different pid file from the default (typically
 /var/run/softwiresd.pid).
-D Foreground mode. Messages will be sent to STDERR, and the process
 will not detach from the shell.

Figure 2-51: Command syntax for Softwires

The role (SC or SI) of the Softwires component is defined in the configuration file
(/etc/softwiresd/l2tpd.conf by default). Such a file contains configuration information for the
L2TP protocol. Below are provided examples of the configuration file to let the softwiresd
daemon work as a SC (LNS in l2tp terminology) and SI (LAC in l2tp terminology).

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 64 of 153

[global]
listen-addr = 192.168.60.3 ; Address to bind to
port = 1701 ; Port to bind to

[lns default]
ip range = 192.168.140.100-192.168.140.199 ; Specify the range of
 ; ip addresses the SC will
 ; assign to the connecting
 ; SI PPP tunnels
local ip = 192.168.140.3 ; softwiresd own ip address
require authentication = yes ; ppp requires authentication
require chap = yes ; ppp requires CHAP auth.
ppp debug = yes
pppoptfile = /etc/ppp/ppp.options ; ppp configuration file

Figure 2-52: Configuration example for Softwires SC component

The previous example shows that the softwiresd component will works as a SC. It will assign the
192.168.140.3 address to the PPP interface on the SC side and an IP address within the range
192.168.140.100-199 to the PPP interface on the SI side. It will use chap as the authentication
method before setting up the PPP session. Other specific PPP options will be taken from the
/etc/ppp/ppp.options file.

[global] ; Global parameters:
port = 1701 ; Port to bind to

[lac si1] ; SI configuration section
lns = 192.168.1.6 ; SC to connect to
pppoptfile = /etc/ppp/options.l2tpd.lac ; ppp configuration file
require authentication = yes ; ppp requires authentication
require chap = yes ; ppp requires CHAP auth.

[lac si2] ; SI configuration section
lns = 192.168.60.3 ; SC to connect to
pppoptfile = /etc/ppp/ppp.options ; ppp configuration file
ppp debug = yes
require authentication = no ; authentication not required

Figure 2-53: Configuration example for Softwires SI component

The previous example shows that the softwiresd component has two SI configurations (one only
SI configuration is possible). The first one (SI1) will connect to the SC whose IP address is

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 65 of 153

192.168.1.6. The second one will connect to the SC whose IP address is 192.168.60.3. The
softwiresd daemon will run as either SI1 or SI2, depending on how the tunnel command is typed
in the shell:

echo "c si1" > /var/run/softwires-control
 SI will connect to the SC defined in the si1 section of the
 l2tpd.conf configuration file

echo "c si2" > /var/run/softwires-control
 SI will connect to the SC defined in the si2 section of the
 l2tpd.conf configuration file

Figure 2-54: Syntax to establish the softwires tunnel in the SI

In order to provide IPv6 connectivity to the PPP session, both the SC and the SI must enable
IPv6 in their respective ppp.option configuration file. The specific parameters are shown below:

+ipv6 #Enable IPv6 in the PPP session
ipv6 ::201,::220 #Provide IPv6 link local address in both peers

Figure 2-55: IPv6 parameters for the PPP session

A softwires tunnel is established through the Pm interface in 2 differentiated phases:

1. To establish the softwires tunnel, the SI first initiates an L2TPv2 Control Channel by
using the syntax shown in figure 2-54. All the messages are sent through UDP datagrams
(port 1701 by default) to the SC which accepts the request and terminates the Control
Channel setup. After the L2TPv2 Control Channel is established between the SI and SC,
the SI initiates an L2TPv2 Session to the SC which takes 3 RTT as shown in figure 2-56.
The meaning of each message is defined in [RFC2661].

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 66 of 153

MN/SI SC

7. Control Connection &
Tunnel Session

establishment success

1. SCCRQ

5. ICPP

3. SCCCN

4. ICRQ

6. ICCN

2. SCCRP

Figure 2-56: Softwires establishment step 1

2. During the second phase, a PPP link is negotiated over the L2TPv2 session between the
SI and SC. In this phase user authentication might be required if either or both the SI and
SC are configured to do so. In such a case, the SC might keep in touch with an AAA
infrastructure (for instance with the MSA if the SC is deployed in the MSP network)
which is not depicted in figure 2-57. Then after the user authentication success and the
PPP link is set up, the SI is provided with an IPv6 link local address (step 21). In order to
provide a global IPv6 address, the SC does the following tasks (step 22) which lets the
SI get a global IPv6 address by using IPv6 auto-configuration as the last step (step 23 and
24):

• It configures the system to forward packets.

• It finds out the name of the PPP interface just created.

• It configures the radvd.conf file for the PPP interface just created in order to
advertise the proper IPv6 network prefix.

• It runs the radvd daemon.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 67 of 153

MN/SI SC

12. PPP LCP success

8. Configuration request

13. Challenge

10. Configuration ACK

11. Configuration ACK

14. Response

9. Configuration request

15. Success

23. Router Solicitation

24. Router Advertisement

17. Configuration request

19. Configuration ACK

20. Configuration ACK

18. Configuration request

16. Authentication success

21. PPP NCP success

25. Tunnel setup success

22. radvd configuration

Figure 2-57: Softwires establishment step 2

After the PPP/IP link is established, it acts as the softwires tunnel between the SI and SC for
tunnelling IPv6 traffic across the IPv4 access network. The MN can bootstrap in order to start the
mobility service. This is done through the interface Pn by encapsulating all the MIPv6 traffic
(both signalling and data) in the PPP/L2TP/UDP packets (port 1701), as depicted in figure 2-48.
All the IPv6 traffic sent through the Pn interface is forwarded by the SC to the IPv6 internet.
Both the control and data channels (interfaces Pm and Pn) share the same UDP port, but they
have different L2TP header formats as defined in [RFC2661].

During the life of the tunnel, both the SI and SC may send L2TPv2 keepalive HELLO messages
through the Pm interface in order to monitor the health of the softwires tunnel and to refresh the
NAT/PAT translation entry at the middle-boxes in path (if any). In the event of keepalive
timeout or administrative shutdown of the softwires tunnel, either the SI or the SC may tear
down the L2TPv2 Control Channel and Session.

Softwires tunnel tear down

The softwires tunnel is deleted by the SI by using the following syntax:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 68 of 153

echo "d si1" > /var/run/softwires-control
 SI will connect to the SC defined in the si1 section of the
 l2tpd.conf configuration file

Figure 2-58: Syntax to delete the softwires tunnel in the SI

2.2 Additional Software Developments

2.2.1 Mobile IPv6 Firewall Traversal

The Mobile IPv6 firewall traversal as developed within ENABLE is described in [ENA-D2.1.2].
This section will focus on the Mobile IPv6 firewall traversal prototype implementation, written
by the University of Goettingen within ENABLE.

2.2.1.1 Mobile IPv6 Firewall Traversal Reference Architecture

Figure 2-59 shows the Mobile IPv6 firewall traversal software architecture. It should be noted
that this reference architecture is based on the assumption that the MSA and the MSP are co-
located.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 69 of 153

CN

MIP6FWD

MIPL

NAT/FW NSLP

Ca

Cb

NSIS

Cc

HA

MIP6FWD

MIPL

NAT/FW NSLP

Ha

Hb

NSIS

Hc

MN

MIP6FWD

MIPL

NAT/FW NSLP

Ma

Mb

NSIS

Mc

Pa

Pa

Pb

Pa

FW
ip6tables

NAT/FW NSLP

Fa

NSIS

Fc
Pb

Pb
Pb

Pb

Pb

Figure 2-59: Mobile IPv6 Firewall Traversal Architecture

The functional elements (orange rectangle) that compose this architecture are:

• Mobile Mode (MN),

• Home Agent (HA),

• Corresponding Node (CN),

• Firewall (FW).

The yellow rectangles represent the software modules, namely MIPL, MIP6FWD, NAT/FW
NSLP, NSIS and ip6tables. Meanwhile the main interfaces are represented with blue connectors.
Both software modules and interfaces are described in the following subsections.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 70 of 153

2.2.1.2 Software modules

2.2.1.2.1 MIPL (MN)

The MIPL module implements the Mobile Node functionalities. The release used is MIPL 2.0.2
[MIPL] developed by GO-Core in co-operation with the USAGI/WIDE Project [USAGI].

The Mobile IPv6 firewall traversal has required some extensions to the MIPL code:

• When the MIPL implementation on the MN gets a new CoA and want to send a Binding
Update to the HA, the MIPL implementation is halted and trigger the MIP6FWD to
trigger a reconfiguration via the interface Mfa. The MIP6FWD now triggers the
NAT/FW NSLP via interface Mfb. When the reconfiguration is finished successfully and
the MIPL receives a corresponding response, it triggers the MIP6FWD to install firewall
pinholes for the Binding Update via interface Mfa, which again uses Mfb to trigger the
NAT/FW NSLP. If the MIPL knows about the successful pinhole creation to the HA, it is
resumed and sends out the Binding Update to the HA as it now can traverse the firewalls.

• If the MIPL implementation wants to send data traffic to a CN, either directly to the CN
or via the HA, it is halted and triggers the MIP6FWD to install the required firewall
pinholes via the interface Mfa, which forwards this trigger to the NAT/FW NSLP using
the interface Mfb.

• The MIPL implementation on the MN communicates with the MIPL implementation on
the HA and the CN using the interface Pfa, which implements the Mobile IPv6 protocol
[RFC3775].

2.2.1.2.1.1 Mfa (MIPL – MIP6FWD)

Mfa is an inter-process interface implemented using a TCP socket. This interface is used to
trigger the MIP6FW daemon in order to trigger the pinholes between the nodes when they are
required. Therefore, a trigger message (of type CREATE) is used, which signals the MIP6FWD
the format of the required pinhole. The format for each type of firewall pinhole is described in
detail in [ENA-D2.1.2]. After triggering the MIP6FWD, the MIPL implementation is halted and
waits for a response message from the MIP6FWD. With the response the MIP6FWD daemon
informs the MIPL implementation about the success of the pinhole creation.

The create trigger messages exchanged between MIPL and MIP6FWD has the following format
(Figure 2-60).

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 71 of 153

0 8 16 24 31

typeprotocol_version

src_ip

ip_version

payload_length protocol_id

dest_ip

src_port dest_port

protocol_parameter

Figure 2-60: MIPL-MIP6FWD create message

• protocol_version: specifies the version of the interface between MIPL and MIP6FWD.
Current version is “1”.

• ip_version: defines whether the IP version of the request is IPv4 or IPv6. In Mobile IPv6
firewall traversal case it is always set to IPv6.

• type: defines the type of the packet. Possible types are:

o MIPTRIGGER_MSG_ERROR (0x00),
to inform the MIPL implementation about an occurred error.

o MIPTRIGGER_MSG_ACK (0x01),
to inform the MIPL about the success of a request.

o MIPTRIGGER_MSG_CREATE (0x02),
to trigger MIP6FWD for pinhole creation.

o MIPTRIGGER_MSG_STATUS (0x03),
to exchange the status of the MIPL and the MIP6FWD implementations.

o MIPTRIGGER_MSG_NSIS_AUTOCONF (0x04),
when the MIP6FWD receives this message, it triggers the NSIS NAT/FW NSLP
implementation to re-configure its IP addresses. This is required after a handover;
otherwise NSIS would not know of its new addresses.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 72 of 153

• payload_length: Defines the length of the payload.

• The following fields specify the format of the requested firewall pinhole:

o protocol_id

o src_ip

o dest_ip

o src_port

o dest_port

o protocol_parameter: for special types for this protocol, e.g. the type of a
mobility header.

Unlike the create message, the other message types, namely the error, response, status and
autoconf messages have the same message format. These messages are also used for exchange
between MIPL and MIP6FWD and have the format as shown in Figure 2-61.

0 8 16 24 31

typeprotocol_version ip_version

payload_length result

Figure 2-61: MIPL-MIP6FWD response message

The format of the protocol_version, ip_version, type and payload_length fields have the same
specification as for the create message.

• result: Informs the MIPL specification about the result of a pinhole creation request.
Possible values are:

o MIPTRIGGER_RESULT_UNKNOWN (0x00),

o MIPTRIGGER_RESULT_ACK (0x01),

o MIPTRIGGER_RESULT_NACK (0x02),

o MIPTRIGGER_RESULT_NACK_FW (0x03),

o MIPTRIGGER_RESULT_PROTCOL_ERROR (0x05),

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 73 of 153

o MIPTRIGGER_RESULT_QUEUE_BUSY (0x10),

o MIPTRIGGER_RESULT_QUEUE_EMPTY (0x11).

The rules that the MIPL and the MIP6FWD modules have to observe are:

• As soon as MIPL implementation knows the new care-of-address (CoA), it sends a
MIPTRIGGER_MSG_NSIS_AUTOCONF to the MIP6FWD daemon.

• When the MIP6FWD receives a MIPTRIGGER_MSG_NSIS_AUTOCONF messages, it
triggers the NSIS NAT/FW NSLP to re-configure its IP-addresses and informs the MIPL
implementation about the success (compare section 2.2.1.2.1.2).

• After receiving a successful MIPTRIGGER_MSG_NSIS_AUTOCONF response, the
MIPL implementation begins to start the pinhole creation progress for the first pinhole
(the pinhole for the BU/BA messages between the MN and the HA). Therefore, it triggers
the MIP6FWD daemon with a MIPTRIGGER_MSG_CREATE message to install this
pinhole and waits for the response.

• When the MIP6FWD receives an MIPTRIGGER_MSG_CREATE message, it computes
this request and triggers the NAT/FW NSLP to install the firewall pinhole as it is
requested. It later informs the MIPL implementation about the success of the pinhole
creation request.

• If the MIPL implementation receives a successful MIPTRIGGER_MSG_ACK to a
MIPTRIGGER_MSG_CREATE message, it resumes the normal MIPL implementation.
This could be to trigger the creation of further firewall pinholes, to trigger NSIS for a
new re-configuration or to resume the normal MIPL process.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 74 of 153

Start

Wait for MIP6FWD

Start

Wait for msg

Wait for NSIS

Get new CoA addr

Send to MIP6FWD
MIPTRIGGER_MSG_NSIS_AUTOCONF

Receive from MIP6FWD
MIPTRIGGER_MSG_ACK

MIPL

Trigger NAT/FW NSLP re-configure

Receive from MIPL
MIPTRIGGER_MSG_NSIS_AUTOCONF

Receive from NSIS
SUCCESS

Send to MIPL
MIPTRIGGER_MSG_ACK

MIP6FWD

Wait for MIP6FWD

Send to MIP6FWD
MIPTRIGGER_MSG_CREATE

[pinhole format]

Receive from MIP6FWD
MIPTRIGGER_MSG_ACK

Wait for NSIS

Tr igger NAT/FW NSLP CREATE
[pinhole format]

Receive from MIPL
MIPTRIGGER_MSG_CREATE

[pinhole format]

Receive from NSIS
SUCCESS

Send to MIPL
MIPTRIGGER_MSG_ACK

Go ahead MIPL

Figure 2-62: Interaction between MIPL and MIP6FWD (MN)

2.2.1.2.1.2 Mfb (MIP6FWD – NAT/FW NSLP)

Mfb is an inter-process interface implemented using a TCP socket. This interface is used to
trigger the NAT/FW NSLP to trigger the pinhole creation progress upon the event of receiving a
message at the MIP6FWD. Therefore, a trigger message is used, which signals to the NAT/FW
NSLP implementation the type of the requested pinhole. After triggering the NAT/FW NSLP,
the MIP6FWD daemon is waiting for a response from the NAT/FW NSLP implementation. With
the response the NAT/FW NSLP implementation informs the MIP6FWD daemon about the
success of the pinhole creation.

The trigger message exchanged between the MIP6FWD and the NAT/FW NSLP has the
following format (Figure 2-63). Note: this message format is used for all kind of signalling
between an application and the NAT/FW NSLP. Therefore, it also consist fields which are not
necessary for the Mobile IPv6 firewall traversal case.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 75 of 153

0 8 16 24 31

lifetimetype

saddr

mode

policy subports

daddr

sid

sport dport sprefix dprefix

protocol spi

mh rh dstoptsh proxy

Figure 2-63: MIP6FWD-NATFW NSLP trigger message

• type: defines the type of the packet. Possible types are:

o NATFW_TYPE_REA (0x01),
to signal for a EXT message (not required for MIPv6 firewall traversal).

o NATFW_TYPE_CREATE (0x02),
to signal for a CREATE message.

o NATFW_TYPE_TRACE (0x03),
to signal for a TRACE message (not required for MIPv6 firewall traversal).

o NATFW_REREADROUTINGTABLE (0x04),
when the NAT/FW NSLP receives this kind of messages, it triggers the NSIS
implementation to re-configure its IP addresses. This is required after a handover;
otherwise NSIS would not know about its new addresses.

• mode: specifies the mode of the message. Possible values are NATFW_MODE_CMODE
(0x01) and NATFW_MODE_DMODE (0x02).

• The following fields specify the format of the requested firewall pinhole:

o lifetime: specifies the lifetime of a firewall pinhole in seconds. If the pinhole is
not refreshed before the lifetime has expired, it will be automatically removed.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 76 of 153

o policy: defines the policy of the pinhole. Possible values are ALLOW (0x01)
and DENY (0x02).

o subports: defines a range of port (if the pinhole requires them).

o saddr, sport, sprefix: source address, source port and source prefix.

o daddr, dport, dprefix: destination address, destination port and destination
prefix.

o protocol: defines the protocol the pinhole matches to.

o spi: specifies a SPI (if the pinhole requires).

o mh, rh, dstoptsh: to signal for a special type of Mobility Header, Routing Header
or Destination Options Header.

• sid: The session ID of this request. Used to identify the request, e.g. in the response
message.

• proxy: flag to trigger the NAT/FW NSLP to use the proxy mode (not required for MIP6
firewall traversal).

The response message format, sent from the NAT/FW NSLP to the MIP6FWD to inform it about
the result of a request is shown in Figure 2-64.

0 8 16 24 31

codeclass code

sid

Figure 2-64: MIP6FWD-NATFW NSLP response message

• codeclass: specifies the codeclass of the response message.

• code: The result of the pinhole creation request. Possible values are SUCCESS (0x01)
or FAILURE (0x02).

• sid: The session ID of the pinhole creation request. Used to identify the primarily request.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 77 of 153

2.2.1.2.1.3 Mfc (NAT/FW NSLP – NSIS)

The interface Mfc implements the NAT/FW NSLP protocol [draft-ietf-nsis-nslp-natfw]. It
communicates with the other NSIS implementation via the interface Pfb. The interface Pfb
implements the NSIS protocol [draft-ietf-nsis-ntlp]. For more details on the NAT/FW NSLP see
section 2.2.1.2.5 or [ENA-D2.1.2].

2.2.1.2.2 MIPL (HA)

This MIPL module implements the Home Agent functionalities. The same release used for the
MN (MIPL 2.0.2) has been used as a starting point for the development on the HA.

The Mobile IPv6 firewall traversal has required some extensions to the MIPL code:

• When the MIPL implementation on the HA receives a specific message (e.g. BA, HoTI
or bidirectional data traffic) it triggers the MIP6FWD via the interface Hfa to install the
corresponding pinhole and waits for the response. The MIP6FWD itself again triggers the
NAT/FW NSLP to trigger this pinhole via the interface Hfb. When the MIPL
implementation receives a successful response it resumes the normal MIPL progress.

• The MIPL implementation on the HA communicates with the MIPL implementation on
the MN and the CN using the interface Pfa, which implements the Mobile IPv6 protocol
[RFC3775].

2.2.1.2.2.1 Hfa (MIPL – MIP6FWD)

Hfa is an inter-process interface implemented using a TCP socket. This interface is very similar
to the interface Mfa, but reacts on different events. In contrast to the Mfa interface, which reacts
on a new CoA, the Hfa interface interacts on the event of receiving a BU message, a HoTI
message or on receiving bidirectional data traffic from the MN.

If this happens, it triggers the MIP6FW daemon to open pinholes between the nodes (e.g. for the
HoTI message between the HA and the CN). Therefore, a trigger message (of type CREATE) is
used, which signals to the MIP6FWD, the format of the required firewall pinhole. After
triggering the MIP6FWD, the MIPL implementation is halted and waits for a response message
from the MIP6FWD. With the response the MIP6FWD daemon informs the MIPL
implementation about the success of the pinhole creation. These messages are similar to the
messages as explained in section 2.2.1.2.1.1.

The rules that the MIPL and the MIP6FWD modules must observe include:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 78 of 153

• As soon as the MIPL implementation receives a specific message (e.g. BA, HoTI or
bidirectional data traffic), it sends a MIPTRIGGER_MSG_NSIS_CREATE message to
the MIP6FWD daemon to install the corresponding pinhole and waits for the response.
For the example, in receiving a HoTI, it triggers a firewall pinhole for the HoTI between
HA and CN, as specified in [ENA-D2.1.2], section 3.4.3.

• When the MIP6FWD receives an MIPTRIGGER_MSG_CREATE message, it computes
this request and triggers the NAT/FW NSLP to install the firewall pinhole as it is
requested. It later informs the MIPL implementation about the success of the pinhole
creation request.

• If the MIPL implementation receives a successful MIPTRIGGER_MSG_ACK to a
MIPTRIGGER_MSG_CREATE message, it resumes the normal MIPL implementation.
This could be to trigger the creation of further firewall pinholes, to trigger NSIS for a
new re-configuration or the normal MIPL process. In our example, this means to send the
HoTI to the CN, as it can now traverse the firewalls.

Start
Start

Wait for msgReceiving Trigger Event
e.g. HoTI

MIPL MIP6FWD

Wait for MIP6FWD

Send to MIP6FWD
MIPTRIGGER_MSG_CREATE

[pinhole format]

Receive from MIP6FWD
MIPTRIGGER_MSG_ACK

Wait for NSIS

Tr igger NAT/FW NSLP CREATE
[pinhole format]

Receive from MIPL
MIPTRIGGER_MSG_CREATE

[pinhole format]

Receive from NSIS
SUCCESS

Send to MIPL
MIPTRIGGER_MSG_ACK

Go ahead MIPL

Figure 2-65: Interaction between MIPL and MIP6FWD (HA)

2.2.1.2.2.2 Hfb (MIP6FWD – NAT/FW NSLP)

Hfb represents the same interface as Mfb, described in section 2.2.1.2.1.2.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 79 of 153

2.2.1.2.2.3 Hfc (NAT/FW NSLP – NSIS)

Hfc is the same interface as Mfc, which is described in detail in section 2.2.1.2.1.3.

2.2.1.2.3 MIPL (CN)

This MIPL module implements the Corresponding Node functionalities. The same release used
for the MN (MIPL 2.0.2) has been used as a starting point for the development on the CN.

The Mobile IPv6 firewall traversal has required some extensions to the MIPL code:

• When the MIPL implementation on the CN receives a specific message (e.g. HoTI, CoTI
or data traffic), it triggers the MIP6FWD via the interface Cfa to install the
corresponding pinhole and waits for the response. The MIP6FWD itself again triggers the
NAT/FW NSLP to trigger this pinhole via the interface Cfb. When the MIPL
implementation receives a successful response it resumes the normal MIPL progress.

2.2.1.2.3.1 Cfa (MIPL – MIP6FWD)

Cfa is an inter-process interface implemented using a TCP socket. This interface is very similar
to the interface Mfa, but reacts on different events. In contrast to the Mfa interface, which reacts
on a new CoA, the Cfa interface interacts on the event of receiving a HoTI message, a CoTI
message or on receiving/sending bidirectional/route optimized data traffic from/to the MN.

If this happens, it triggers the MIP6FW daemon in order to trigger a firewall pinhole between the
nodes (e.g. for the HoT message between the CN and the HA). Therefore, a trigger message (of
type CREATE) is used, which signals the MIP6FWD the format of the required firewall pinhole.
After triggering the MIP6FWD, the MIPL implementation is halted and waits for a response
message from the MIP6FWD. With the response the MIP6FWD daemon informs the MIPL
implementation about the success of the pinhole creation. These messages are similar to the
messages as explained in section 2.2.1.2.1.1.

The rules that the MIPL and the MIP6FWD modules have to observe are:

• As soon as MIPL implementation receives a specific message (e.g. HoTI, CoTI or data
traffic), it sends a MIPTRIGGER_MSG_NSIS_CREATE message to the MIP6FWD
daemon to install the corresponding pinhole and waits for the response. For the example
of receiving a HoTI, it triggers a pinhole for the upcoming HoT between CN and HA, as
specified in [ENA-D2.1.2], section 3.4.4.

• When the MIP6FWD receives an MIPTRIGGER_MSG_CREATE message, it computes
this request and triggers the NAT/FW NSLP to install the firewall pinhole as it is

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 80 of 153

requested. It later informs the MIPL implementation about the success of the pinhole
creation request.

• If the MIPL implementation receives a successful MIPTRIGGER_MSG_ACK to a
MIPTRIGGER_MSG_CREATE message, it resumes the normal MIPL implementation.
This could be the installation of further firewall pinholes, or the normal MIPL process. In
our example, this means to send the HoT to the HA, as it now can traverse the firewalls.

Start
Start

Wait for msgReceiving Trigger Event
e.g. HoTI/CoTI

MIPL MIP6FWD

Wait for MIP6FWD

Send to MIP6FWD
MIPTRIGGER_MSG_CREATE

[pinhole format]

Receive from MIP6FWD
MIPTRIGGER_MSG_ACK Wait for NSIS

Trigger NAT/FW NSLP CREATE
[pinhole format]

Receive from MIPL
MIPTRIGGER_MSG_CREATE

[pinhole format]

Receive from NSIS
SUCCESS

Send to MIPL
MIPTRIGGER_MSG_ACK

Go ahead MIPL

Figure 2-66: Interaction between MIPL and MIP6FWD (CN)

2.2.1.2.3.2 Cfb (MIP6FWD – NAT/FW NSLP)

Cfb represents the same interface as Mfb, described in section 2.2.1.2.1.2.

2.2.1.2.3.3 Cfc (NAT/FW NSLP – NSIS)

Cfc is the same interface as Mfc, which is described in detail in section 2.2.1.2.1.3.

2.2.1.2.4 MIP6FWD

The MIP6FWD is implemented by the University of Göttingen within ENABLE. It is used to
translate and forward triggers from the MIPL implementation arrival via the interfaces Mfa, Hfa
or Cfa to the NAT/FW NSLP via the interface Mfb, Hfb or Cfb. The NAT/FW NSLP uses the

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 81 of 153

interface Mfc, Hfc or Cfc to communicate with the NSIS NTLP. It also waits for the response of
the requests and forwards it back via the arrival interface.

2.2.1.2.5 NSIS

The University of Göttingen has implemented the GIST protocol (which is the implementation of
the NSIS NTLP protocol) in C++, using Linux 2.6 kernel. The implementation is fully
conformant to the GIST protocol and it’s API [draft-ietf-nsis-ntlp]. The code is publicly
available in [http://user.informatik.uni-goettingen.de/~nsis].

The implementation architecture is shown in Figure 2-67. It is currently based on a single
process approach using a main event loop based on [XORP] library, which is used to implement
socket maintenance and callbacks as well as timer callbacks. This design has no additional
overhead for maintaining and synchronizing multiple threads, which results in a high throughput
and a rather simple implementation.

Figure 2-67 NSIS Implementation Architecture

Besides the event loop, a key component in the GIST implementation is state management. In
order to support tens of thousands of signalling sessions efficiently, we used a hash table to
manage the MRSs, associated with linked lists to resolve conflicts. A standard lookup takes a
constant time, however in the worst case, all table entries would be compared to find a given
MRS.

To search the MRS table, one needs to know the associated key information, namely the session
ID, the NSLP ID and message routing information (MRI). This is nevertheless subject to some

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 82 of 153

limitations, e.g., it is not possible to search for all MRSs using a specific MRI. Such a search
feature may be useful to find MRSs that are affected by a detected link failure. A possible
solution is to maintain specialized hash tables for link failures, which would allow for quick
searches. However, this approach would add maintenance overhead to every MRS table (which
usually comprise a number of tables) operation.

In addition to managing MRSs, a GIST implementation has to manage MAs for C-mode
operations. If two peers already have a MA and a new session is being established on the same
path, the MA should be reused to minimize resource usage. This feature implies that there
should be a way to search the MA table for an MA that can be reused for a certain session. Our
implementation uses a second hash table to accomplish that goal. The upstream peer information
(PI) serves as the key information. The UDP socket is treated as a “virtual” MA for the
convenience of unifying the socket interface module.

Another important component of the GIST implementation is the finite state machine (FSM) to
maintain states for each session. The GIST finite state machine [draft-ietf-nsis-ntlp-
statemachine] is implemented based on a combination of the XORP timer class and an FSM
framework that was originally written for the Linux ISDN device driver.

Every MRS is associated with two FSMs, one for the upstream peer and another one for the
downstream peer. There is no need for a global table of FSMs, because every MRS provides
pointers to the associated FSMs. In addition, every MA has a list of FSMs which it is associated
with, so that the state machines can be informed e.g., when a loss of connectivity with its current
peer takes place.

2.2.1.2.6 NAT/FW NSLP

The NAT/FW NSLP [draft-ietf-nsis-nslp-natfw] daemon is implemented in userspace using C++.
The code builds upon a GIST daemon that was developed at the University of Göttingen, both
implementations are freely available in a single release [NSIS_UGOE] for Linux. The GIST
daemon offers an API for NSLPs to use its generic transport services via UNIX sockets.
NAT/FW NSLP daemon itself also offers an API to upper layers to allow applications to trigger
signalling flows, such as accepting inbound connections at an edge firewall. As depicted in
Figure 2-68, the implementation consists of six main parts:

• server core connecting to GIST-API and delegating callbacks to the other components,

• NAT/FW engine API,

• protocol behaviour defined in a finite state machine,

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 83 of 153

• message parsing and construction,

• security policy table and

• APIs to firewall and NAT.

• NAT/FW engines, (e.g. MIP6FWD) which enforce the NAT bindings and FW policy
rules for corresponding data traffic, are connected to the NAT/FW NSLP daemon via the
NAT/FW engine-API.

Figure 2-68: NAT/FW NSLP Architecture

We chose to use the Linux kernel netfilter [NETFILTER] module and its iptables front end as
the NAT and firewall, because of its availability and complete coverage of required features. The
use of the low-level iptables API libiptc is still discouraged by its developers because lack of
robustness and missing documentation. To avoid problems and incompatibility with different
iptables versions we chose to use a system() call to invoke an iptables process with according
parameters, although this approach is known to be inefficient. NAT/FW NSLP imposes only a
small set of requirements on the used firewall and NAT, as NAT/FW NSLP supports only adds a
small subset of functionality to any possible firewall or NAT implementation and thus replacing
the currently used firewall and NAT can be done easily.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 84 of 153

It was shown during the GIST development that having an efficient finite state machine in source
code that represents similar sets of states, transitions and actions as in the state machine
specification, simplifies the understanding of the code without sacrificing performance. A C++
template was written to allow reusability among GIST and NSLP daemon development, enabling
a mapping between the definition of a finite state machine, including states, transitions and
actions to corresponding variables, function pointers and executable code.

The NAT/FW NSLP state machine [draft-werner-nsis-natfw-nslp-statemachine] lists three
possible initial states, a host being in an initiator, a forwarder or a receiver idle state. The
decision whether a message has to be forwarded or delivered can not be made solely on the
destination address in GIST Message Routing Information (MRI) as in the NAT case; it is being
rewritten, similarly as IP headers in NATs. Moreover, it depends on the current NAT
configuration (or alternatively, often called reservation) status at the host where a message is
received. The idea of the state machine giving a high-level overview for protocol understanding
misses some aspects, such as locator rewrite and reservation dependency, that were fundamental
aspects during implementation. Incoming message are processed by GIST and delivered to an
NSLP if the NSLP is supported on that node. The NSLP decides whether to accept the message
or to forward it. In the NAT/FW NSLP there are messages that are meaningful either just for
NAT or just for firewall. The daemon configuration allows for the setting of flags to indicate
whether a NAT/FW NSLP host is running a firewall, a NAT or both. After a message is accepted,
basic validity checks are performed and the daemon will try to associate an existing state with
the incoming message based on the session ID carried in NSLP payload. If there is no state
installed yet, a new state machine object with a new session ID needs to be created. As
mentioned above, it must be distinguished whether the host is the NR of the signalling path or
whether it is a NF. Depending on the initial state, the protocol behaviour for this session is
different. In contrast, if the action is triggered via the API the host is always the NI and a new
state machine object with a new session ID is created. Now, as the state machine object is
created and the initial state is determined, the transition is applied on it. Transitions are modelled
as a set of states, events and function pointers on the state machine object. According to a given
state and an incoming event, the corresponding function in the state machine is called. This
keeps the function call overhead very small. The function bodies contain all relevant code that
defines the protocol behaviour, such as state manipulation, NAT and firewall interaction,
message parsing and construction.

Fa is the interface between the NAT/FW NSLP on the firewall and ip6tables. This interface
translates the parameters of the firewall pinhole used inside the NAT/FW NSLP to a format
adoptable by ip6tables. Furthermore, its builds a command line string which can install or delete
the pinhole into/from the local firewall implementation and triggers this by using a system()
system call.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 85 of 153

Fc is the interface between the NAT/FW NSLP and NSIS and similar to Mfc, which is described
in detail in section 2.2.1.2.1.3.

2.2.1.2.7 ip6tables

The ip6tables module implements the firewall functionalities. The NETFILTER iptables
[NETFILTER] release 1.3.8 (or above) can be used. The Mobile IPv6 firewall traversal
implementation requires the following patches/extensions to be installed on all firewalls:

• mh: This module add Mobility Header matches for IPv6.

• rt: This module add Routing Header IPv6 support.

• dst: This module allows to match the parameters in Destination Options Header.

2.2.2 Mobility optimisations

The goals of this FMIP6 system prototyping is to provide an implementation of the FMIPv6
protocol which is fully compliant with [RFC4068], which provides improved handover latency
in MIP6 and to also demonstrate the developed FMIP6 and GSABA optimized mobility service
as designed and studied in WP4. Given below is a reference software architecture along with the
required modules and interfaces.

Figure 2-69 Modules and interfaces for fmipv6 integrated with GSABA

The software architecture of the FMIPv6 / GSABA prototype contains the following
components:-

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 86 of 153

• PAR

• NAR

• MN

• HA

• CN

The rectangles represent the software modules, namely FMIPv6, HOKEY, Xsupplicant,
FreeRadius. Meanwhile the main interfaces are represented with blue connectors. For simplicity
reasons the GSABA server and GSABA proxy have been co-located in the testbed development.
Both software modules and interfaces are described in the following subsections.

2.2.2.1 Overview of FMIPv6 applicability to the GSABA architecture

Figure 2-70 FMIPv6 integrated with GSABA message flow

Detailed description of the message for FMIPv6 applicability to the GSABA architecture is
provided in [ENA-D4.2]. In Figure 2-70, only the relevant message flows (i.e. implemented
interfaces) are shown. Functionality of the network nodes involved are discussed below.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 87 of 153

2.2.2.1.1 MN

In Figure 2-70, after MN bootstrapping, the MN requests FMIP services by sending an ABIREQ
(step 1) message to the GSABA proxy. The MN must specify its identifier, which is the BCID,
and must indicate that it is requesting Fast Mobile IPv6 support. After MN gets fmipv6 service
authorisation from GSABA Proxy/Server via the ABIRSP (step 1), it will request the handover
keys from the current attached AR and the neighbour ARs which will be attached during
Handover. Initially the MN sends the Handover Key Request (HKReq) message to the serving
access router (pAR)(step 2). The MN creates the HKReq message including an NAI-like
identifier (that was derived possibly during the time of HMK derivation), a message ID, and the
care-of-address (CoA).

The MN also generates a nonce and includes it in the HKReq message. Further, the MN
indicates the PRF algorithm that it chooses to use for key generation in the HKReq message.
After neighbour AR detection and before fmipv6 handover, the HOKEY request message to
nARs is sent by MN (step 9).

After successful HOKEY procedures, the handover keys will be used during the FMIPv6
protocol handover procedure. Please refer to the message flow above. A detailed description of
how the FMIPv6 protocol utilises handover keys will discussed in section 2.2.2.2.1.3.1 (i.e. the
SP interface).

2.2.2.1.2 AR

After receiving the HOKEY request message from the MN and doing the relative processing of
the message, the AR will send the SIReq message to GSABA Proxy/Server.

If the AR receives a successful SIRsp message from the GSABA Proxy/Server, it MUST store
the handover key received from the AAA server along with the CoA and MN ID and index it
additionally with an SPI. The AR MUST send the SPI, AAA Nonce and lifetime received at the
RADIUS message by the HKRsp message to the MN.

2.2.2.1.3 GSABA Proxy/Server

After received the ABIREQ message from the MN, the GSABA Proxy will verify it and do some
judgments according to the fields in that massage. Then the GSABA Proxy sends the ABIRES
message to the MN.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 88 of 153

2.2.2.2 Implemented Software Modules

2.2.2.2.1 MN

2.2.2.2.1.1 Openssl

The result of openssl module at the MN side leads to the following interface:-

2.2.2.2.1.1.1 BCA-P

The BCA-p interface is used for the communication between MN and GSABA proxy. This
interface is intended to serve two purposes. Firstly, the configuration parameters needed for a
specific service can be requested from the MN. Secondly, the authorisation decision taken by the
network is conveyed to the MN.

Figure 2-71 Message flows for FMIPv6 service Authorisation

After the GSABA key has been established, the MN and the GSABA proxy can exchange
service configuration and authorisation information carried out by the ABIREQ and ABIRES
messages via the BCA-p interface. The MN requests FMIP services by sending an ABIREQ
message to the GSABA proxy, after checking the MN authorisation state against the previously
downloaded user profile, the GSABA Proxy returns an ABIRES message to the MN, which
includes the authorisation results.

During development, we used HTTP/TLS to realise this function. The software Openssl-0.9.8e is
installed and configured at both MN side and GSABA Proxy side; the Apache-2.2.4 server is
installed and configured at GSABA Proxy side.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 89 of 153

2.2.2.2.1.2 HOKEY (MN)

Huawei has fully implemented the HOKEY software module using C programming language in
Linux ‘Ubuntu’ distribution with kernel version 2.6.16. This software module is in complete
compliance with the [HOKEY] IETF draft. The result of HOKEY module implementation is the
creation of the HK-p interface and Ma internal interface. Given below is the description of each
of these interfaces.

2.2.2.2.1.2.1 HK-p

The HK-p is an external/network interface between the MN and AR. Through this interface, the
MN can retrieve the Handover Key (HK) to protect the relative messages between the MN and
AR. With respect to the FMIPv6 application, the HK-p interface includes two aspects: one is the
interface between the MN and pAR. The other is the interface between the MN and nAR.

MN AR GSABA proxy

1.HKReq

4.HKRsp

Figure 2-72 Message Flow for HOKEY

After bootstrapping and service authorisation, the MN sends the Handover Key Request (HKReq)
message to the serving access router (pAR). The MN creates the HKReq message including an
NAI-like identifier (which was derived possibly during the time of HMK derivation), a message
ID, and the care-of-address (CoA). The MN also generates a nonce and includes it in the HKReq
message. Further, the MN indicates the PRF algorithm that it chooses to use for key generation
in the HKReq message. The MN includes a MAC of the message fields in an MN-AAA MAC
Mobility sub-option. In order to obtain replay protection, the MN SHOULD use the Timestamp
mobility option. Upon successful delivery of HKReq, the HOKEY module in the module waits
for HKResp message from the pAR.

Upon receiving a successful HKRsp message from the AR, the MN MUST ensure that the
message contains the MN-AR MAC mobility option. If not, it MUST silently discard the

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 90 of 153

message. The MN MUST ensure that the Message ID matches with that of the corresponding
HKReq. If there is a mismatch, it MUST drop the packet. The MN MUST compute the
handover key using the keying material contained in the HKRsp message. The MN MUST verify
the AUTH Value in the MN-AR MAC mobility option using the HK derived. The MAC
algorithm used is the one specified in the Algorithm Type field of the MN-AR MAC mobility
sub-option. If the MAC algorithm is not supported by the MN, it MUST discard the message. If
the AUTH Value verification fails, the MN MUST silently discard the message.

Upon successful processing of the HKRsp and derivation of the valid HK, the MN MUST store
the SPI and lifetime associated with the key, as sent in the HKRsp.

0 8 16 24 31

Message ID

Mobility option(variable)

VPRFP Reserved

Key care of address

Figure 2-73 HKReq mobility header

0 8 16 24 31

Message ID

Mobility option(variable)

VPRFP Reserved

Status Code Lifetime

SPI

Figure 2-74 HKRsp mobility header

2.2.2.2.1.2.2 Ma/Mb

After the HK processing with pAR, the MN will store the HK (between MN and pAR) and the
relative parameters (such as SPI and lifetime). This should be taken place between step5 and
step7 in Figure 2-70.

After the MN finishes the scanning and before handover processing, the MN will do the HK
processing with the recommend nAR (Maybe there are more than one nAR, but at present, we
suppose there is only one nAR), after the HK processing with nAR, the MN will store the HK
(between the MN and nAR) and the relative parameters (such as SPI and lifetime).

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 91 of 153

So, there are at least 2 sets of HK parameters existing sometime in MN. We designed a structure
to store the HK relative parameters. The structure is:

struct hk_para{

 uint16_t liftime;

 uint32_t spi;

 uint8_t hk[12]; /*96 bits*/

 struct in6_addr *ar_addr; /*to distinguish which AR the HK belong to*/

};

Then we define the global variable: struct hk_para ar_hk_para;

After the MN handles the received successful HKRsp message from the pAR, the MN will store
the HK parameters in the ar_hk_para structure.

After the MN handles the received successful HKRsp message from the nAR, the MN will store
the HK parameters in the ar_hk_para structure also.

There are 2 other global variables defined:

struct hk_para mn_par_hk_para;

struct hk_para mn_nar_hk_para;

While the MN does the scanning procedure, we can copy the ar_hk_para variable to
mn_par_hk_para. And during the MN handover procedure, we copy the ar_hk_para to the
mn_nar_hk_para.

It is now that the fmip module can get the HK (between MN and pAR) from mn_par_hk_para
variable to protect the FBU/FBack message, and can get the HK (between MN and nAR) from
mn_nar_hk_para variable to protect the FNA message.

Notice: the code for more than one nAR is for future study.

2.2.2.2.1.3 FMIPv6 (MN)

The FMIPv6 module in the MN uses the open source code developed by [FMIPv6]. Brunel
University has modified the source code in a Linux ‘Ubuntu’ distribution under the 2.6.16 kernel
version. The FMIPv6 at the MN is used for all the FMIPv6 signalling which is compliant with

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 92 of 153

[RFC4068]. The modifications/extensions made by Brunel contribute to the creation of the SP
interface.

2.2.2.2.1.3.1 SP

The SP interface is service specific and is the interface between the MN and ARs. The protocol
used to implement this interface is [FMIPv6] which is available as open source and distributed
under the GNU General Public License.

It is very important to note here that source code in the MN needs to be modified to have a
new mobility (authentication) option. This allows the Fast Binding Update (FBU) to be
securely sent (i.e. in terms of integrity of the message, and authentication) from the MN to the
pAR. The Fast Binding Acknowledgement (FBack) sent by the pAR in response to the FBU
needs to be secured in the same way. Also, the FNA sent by the MN to the nAR needs to be
secured using the MAC mobility option as well. The new authentication option should be in the
form of a MAC (Message Authentication Code) and described in [RFC 4285]. A cryptographic
message authentication code (MAC) is a short piece of information used to authenticate a
message. A MAC algorithm accepts as input a secret key and an arbitrary-length message to be
authenticated, and outputs a MAC (sometimes known as a tag). The MAC value protects both a
message's integrity as well as its authenticity, by allowing verifiers (who also possess the secret
key) to detect any changes to the message content.

The format of the MN-pAR and MN-nAR (i.e.FBU, FBack and FNA) mobility message
authentication option is defined in Figure 2-75. This option uses the subtype value of 1. The
MN-pAR mobility message authentication option is used to authenticate the FBU and FBack
messages based on the shared-key-based security association between the MN and pAR.
Similarly, the MN-nAR mobility option is used to authenticate the FNA message. The shared-
key-based mobility security association between the MN and the pAR used within this
specification consists of a mobility SPI, a key, an authentication algorithm, and the replay
protection mechanism in use. The mobility SPI is a number in the range [0-4294967296], where
the range [0-255] is reserved. The key consists of an arbitrary value and is 16 octets in length.
The authentication algorithm is HMAC_SHA1. The replay protection mechanism may use the
Sequence number as specified in [RFC3775] or the Timestamp option as defined in Section 6. If
the Timestamp option is used for replay protection, the mobility security association includes a
"close enough" field to account for clock drift. A default value of 7 seconds should be used.
This value should be greater than 3 seconds.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 93 of 153

The mobility message authentication option in the FBU and FBack must be the last option in a
message with a mobility header if it is the only mobility message authentication option in the
message.

The encryption algorithms for HMAC available in Linux (Ubuntu distribution, kernel 2.6.16) are
available in a package called libdigest-hmac-perl (1.01-1). The encryption algorithms included
in the packages are MD5 and SH1.

The shared secret key (in this case, the HK key as shown in figure 1-4) is derived from the
Handover Master Key (HMK).

The authentication data is calculated on the message starting from the mobility header up to and
including the mobility SPI value of this option.

 Authentication Data = First (96, HMAC_SHA1(MN-pAR Shared key, Mobility Data))

 Mobility Data = care-of address | home address | Mobility Header (MH) Data

 MH Data is the content of the Mobility Header up to and including the mobility SPI field of
this option. The Checksum field in the Mobility Header must be set to 0 to calculate the
Mobility Data. The first 96 bits from the Message Authentication Code (MAC) result are used as
the Authentication Data field.

Figure 2-75 MAC mobility option

 Option Type:

AUTH-OPTION-TYPE value 9 has been defined by IANA. An 8-bit identifier of the type
mobility option.

 Option Length:

8-bit unsigned integer, representing the length in octets of the Subtype, mobility Security
Parameter Index (SPI) and Authentication Data fields.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 94 of 153

 Subtype:

A number assigned to identify the entity and/or mechanism to be used to authenticate the
message.

 Mobility SPI:

Mobility Security Parameter Index

 Authentication Data:

This field has the information to authenticate the relevant mobility entity. This protects the
message beginning at the Mobility Header up to and including the mobility SPI field.

2.2.2.2.2 ARs (pAR & nAR)

The ARs also use the open source code developed by [FMIPv6]. Brunel University has modified
the source code in a Linux ‘Ubuntu’ distribution under the 2.6.16 kernel version. The FMIPv6 at
the AR is used of all the FMIPv6 signalling which is compliant with [RFC4068]. With the
ENABLE architecture requiring secure FMIPv6 handover, the following interfaces were created.

2.2.2.2.2.1.1 Hokey/Tp-p

Tp interface is used for communication between Access Router and GSABA Server. SIREQ and
SIRES messages are exchanged on this interface. The SIREQ message contains CoA, MN ID,
message ID, life time and SPI. There are no existing AVPs for sending all the parameters. So we
have used two different protocols for this purpose. MN ID is sent via standard radius protocol
and remaining parameters are sent via standard SQL query which directly updates the user
Database. SQL updates are only allowed from specified IP addresses of ARs on the database
server to prevent un-authorised access.

The Radius packet has the following format.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 95 of 153

Figure 2-76 Tp Interface Message format

• Code: specifies type of RADIUS packet

• Identifier: specifies the RADIUS response with the correct outstanding request

• Length: specifies length of packet

• Authenticator: sixteen octets long and contains the information that the RADIUS client
and server use to authenticate each other

• Attributes: is a section where an arbitrary number of attributes are stored.

The attribute section of the packet is used to send MN ID to GSABA server, if it is verified
correct, GSABA would reply with AAA-Nonce, GSABA time-stamp and a handover key.

2.2.2.2.2.1.2 Mx/My

If the AR receives a successful AAA response message from the AAA server, it must store the
handover key received from the AAA server along with the CoA and MN ID and index it
additionally with an SPI.

The AR MUST send the SPI, AAA Nonce and lifetime in the RADIUS message in the HKRsp
message to the MN. The AR MUST include a MAC of the message created using the HK in the
MN-AR MAC Mobility Sub-Option carried in the HKRsp message.

When AR sends the HKRsp message to the MN, it should use the HK to calculate the MAC to
protect the HKRsp message; and during the handover procedure, the AR should us the HK to
protect the FBack message.

So the Mx interface functionality is how the HOKEY module to get the HK when calculating the
MAC.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 96 of 153

So we can define a global structure variable to store the received HK from AAA at the AR side.
The structure is:

struct hokey_para{

 uint32_t spi;

 uint8_t hk[12]; /*96 bits*/

 struct in6_addr *coa;

struct in6_addr *mn_id;

uint16_t status_code,

uint16_t lifetime,

uint8_t ho_nonce[16]

uint8_t timestamp[8]

};

Then we define the global variable: struct hokey_para mn_ar_hokey_para

After receiving a successful AAA response (SIRsp), the AR stores the HK parameters to the
mn_ar_hokey_para global variable, and when the HK is needed at the AR side, we can get the
HK from this variable.

The following parameters:

uint16_t status_code,

uint16_t lifetime,

uint32_t spi,

uint8_t ho_nonce[16]

uint8_t timestamp[8]

will be used through the hokey_ar_send_hkrsp() function to be sent to the MN. They can be
read from the global structure variable: mn_ar_hokey_para.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 97 of 153

2.2.2.2.2.2 HOKEY (AR)

After receiving the HKReq message, the AR must first determine if it has a pending request from
the MN with the same message id. If so and if the AR has already received the AAA response
corresponding to the HKReq, the AR should retransmit the HKRsp to the MN. For further
protection from replays, the rate of retransmissions of responses to MN must not be more than a
preconfigured RETRANS_RATE. If the AR already forwarded this message to the home
GSABA Proxy but has not yet received a response from GSABA Proxy, the AR must silently
discards the retransmitted request from the MN. If the HKReq message is the new request form
MN, pAR must first ensure that it has a valid neighbour cache entry for the CoA claimed by the
MN. The pAR further verifies the validity and uniqueness of the CoA claimed by the MN. After
verifying the validity of the CoA of the MN, pAR forwards the HKReq message to the GSABA
Proxy (using the SIReq message).

After the AR receives a successful response message from the GSABA Proxy, it must store the
handover key received from the AAA server along with the CoA and MN ID and index it
additionally with an SPI. The AR MUST send the SPI, AAA Nonce and lifetime in the RADIUS
message in the HKRsp message to the MN. The AR MUST include a MAC of the message
created using the HK in the MN-AR MAC Mobility Sub-Option carried in the HKRsp message.

2.2.2.2.2.3 FMIPv6 (AR)

The FMIPv6 module in the pAR and nAR uses the open source code of [FMIPv6]. Like the
FMIPv6 module at the MN, the FMIPv6 in the ARs (both the pAR and nAR) have been
modified/extended by Brunel University. The FMIPv6 protocol at the pAR is responsible for
sending the FBack upon receipt of the FBU from the MN. The following interfaces are created
and used by FMIPv6 module at ARs (i.e. pAR and NAR)

2.2.2.2.2.3.1 SP

The pAR and nAR will use the SP interface to securely send the FBACK and FNA respectively
to the MN. For this reason, the source code [FMIPv6] in the ARs has been modified to have a
new mobility authentication option as described in section 2.2.2.2.1.3.1.

The format of the MN-pAR and MN-nAR (i.e.FBU, FBack and FNA) mobility message
authentication option is defined in Figure 2-75.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 98 of 153

2.2.2.2.3 GSABA Server

Bb/Aa is an internal interface of the GSABA server which is used between the user database and
FreeRadius. FreeRadius supports different database servers including MySQL which is used in
our case. Simple SQL queries are run over this interface.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 99 of 153

3. FINAL TEST-BED DESIGN

The following sections illustrate the different test-beds used for the three major developments
undertaken in the ENABLE projects.

3.1 Test-bed for Integrated Software

The test-bed for integrated software components is illustrated in Figure 3-1. This test-bed has
been used to test and demonstrate the following ENABLE functionalities:

• EAP-based MIPv6 bootstrapping for integrated scenarios.

• DHCPv6 MIPv6 bootstrapping for integrated scenarios.

• DNS-based bootstrapping for split scenarios.

• MIPv6 authentication based on IKEv2 (and HoA provisioning).

• Diameter interface between HA and MASA AAA server for service authorisation.

• HA load-sharing.

• IPv4 extensions for MIPv6 including support for roaming in IPv4-only (AN6 and AN7)
and dual stack access network (AN1 and AN2).

HA 1

Mobile Nodes

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)
2001:6b8:20:1842/64

RA = 500ms RA = 500msRA = 500ms

2001:6b8:20:1845/64

AN6 (IPv4)
163.162.171.32/28

163.162.184.0/28 163.162.184.128/28
AP / DHCP relay

AN4 (IPv6) RA = 500ms

AN7 (IPv4)
163.162.171.72/29

Figure 3-1 Final Test-bed for integrated components

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 100 of 153

The Mobile Node is not supposed to enter the Home Network. This assumption is reasonable
since it is likely that the HN will be implemented as a virtual network by mobile operators. The
Home Network has been populated with two Home Agents to demonstrate the HA load sharing
functionalities.

All the machines, apart from mobile nodes and the DNS server, have been implemented as
virtual machines installed on a powerful VMware ESX 3.0 server. Basically, the starting point
for all of them was a cloning operation from a clean installation of an Ubuntu 6.0.6 (Dapper)
server. As MNs, two Compaq nc8000 laptops and a Nokia 770 PDA are used.

For demonstration purposes all the access networks were accessible both as open and through
EAP authentication. For example, access network 1 (AN1) was freely accessible using as essid
“ENABLE_AN1” or through EAP authentication using the “ENABLE_EAP_AN1” essid. An
exception to this rule is access network 5 which is only accessible through EAP authentication
and it is the only one supporting DHCPv6-based bootstrapping. Since DHCPv6 support required
modification on the AP behaviour, for access network 5 a Linksys WRT54GL using Linux
OpenWRT (KAMIKAZE bleeding edge, r5974) was used. For other access networks two
unmodified Cisco Aironets 1200 (IOS IOS C1200-K9W7-M, 12.3(7)JA3) were used. They were
configured in virtual ap mode to support multiple essid in order to avoid the necessity of an
access point for every single access network.

3.2 Test bed for NSIS / Mobile IPv6 firewall traversal

The test-bed for integrated software components is illustrated in Figure 3-2. This test-bed will be
used to test and demonstrate the ENABLE Mobile IPv6 firewall traversal functionalities.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 101 of 153

HA

Mobile Node

AN

2001::50

2001::2

HN
2001::1

2002::1

2100::1

2100::2
2100::3

2003::1

CN
2003::2

Figure 3-2 Final Test-bed for Mobile IPv6 Firewall Traversal

The Mobile Node will start in the Home Network and later enter a foreign network. During this
handover, the Mobile IPv6 firewall traversal process is performed automatically.

The HA, the CN and the firewall at the edge of the CN network have been implemented as
virtual machines installed on a VMware ESX 3.0 server. Basically, the starting point for all of
them was a cloning operation from a clean installation of an Ubuntu 6.0.6 (Dapper) server. For
the firewall on the access network side, it is integrated into a wireless access router which is
based on a small form factor mini-itx based computer which can also run an installation of the
Ubuntu 6.0.6 (Dapper) OS. The MN for the demonstration is a Sony laptop.

3.3 Test bed for Mobility Optimisations

The test bed for Mobility Optimisation is illustrated in Figure 3-3. This test bed was used to test
and demonstrate the optimised mobility based on FMIPv6.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 102 of 153

Figure 3-3 Test-bed for Optimised Mobility

The MN will start connecting to one of the access points and later on it will switch to the other
one, while receiving data on its HoA. During this handover, the modified FMIPv6 procedures
would be followed. At startup, the FMIPv6 service will be authorised by the GSABA server,
then the MN will send a HKreq to the pAR. In response to the HKreq, the pAR will contact the
GSABA for HK and will reply with a HKres. The same procedure would be followed for
contacting nAR. On receiving a HKrsp from the nAR, the MN will send a FBU to the pAR and
then the pAR will send a HI to the nAR. The nAR will reply with a HAck. Once the HAck is
received a FBAck will be sent to the MN, which will send a FNA to the nAR.

The GSABA is implemented in VMware for portability and rest of the elements are implemented
on actual machines.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 103 of 153

4. INSTANTIATION OF THE APPLICATION SCENARIO

In [ENA-D6.1] a realisation of the ENABLE MIPv6 service environment was described using a
search and rescue scenario. The scenario described a number of scenes where multiple networks,
actors and devices interoperate with each other. A search and rescue scenario is ideal for the
MIPv6 service environment as there is an abundance of technologies interoperating with each
other. In addition, due to the emergency aspect of the scenario the quality of the connection
between the actors and the ASPs must be both reliable and seamless due to the risk involved of a
dropped data exchange.
This section shall present the link between the application scenario as described in [ENA-D6.1],
and the instantiation of the ENABLE demonstration. This section shall show how the main actor
in these search and rescue scenes comes in and goes through the ENABLE MIPv6 service
environment test bed, accessing the different networks (EAP/non-EAP, IPv6-only, IPv4-only and
dual-stack). It shall also describe the visualisation software and shall show an example of how
the ENABLE MIPv6 service environment is demonstrated to interested third parties.

4.1 Definition of the ENABLE Demonstration

In order to define the ENABLE demonstration, mappings have to be done between the two trial
scenes in the search and rescue scenario, specifically Scene 3 (not enough assets on site,
volunteers called in) & Scene 6 (ambulance transports the victim from rescue scene to hospital)
and the test case scenarios as detailed in Section 5.1, and the screenshots of the test bed as shown
in Appendix A.

4.1.1 SAR Scene 3 Demonstration

Scene 3 is described in [ENA-D6.1] as follows:

“Once all vehicles and people have been deployed around the search location area, further
assets may be required onsite if the location of the search area grows, e.g. there are not enough
SAR practitioners to cover an area. In this scenario extra volunteers may be called in to the site
to aid in the searching. In addition to people, extra equipment may also be brought to the site.
These additional personnel called into the search will be one of the main actors played in the
rescue scenario as they may move between IPv6, IPv4-only, and dual stacked networks “

In the first action of events in scene 3 John represents an example of a SAR volunteer, called by
the search teams whenever there is a lack of resources at the search site. John has a MN with
three network interfaces including WLAN/WMAN, 3G and LAN. In this scene John bootstraps

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 104 of 153

his mobile node in an access network that is currently open with no authentication; it supports a
DS of IPv4 and IPv6 and requests his home agent through a DNS query. This sequence of events
is represented using the following test cases and graphical test bed references.

Table 4-1 Mapping of Scene 3 to Test Cases & Demonstration of Split Bootstrapping

Test Case References Test Bed Graphical References
ENA-TCS-001 split_bs_dnsquery_2001-6b8-20-186—eaX_163-162-186-10X

ENA-TCS-005 split_bs_ike_michele_anY_2001-6b8-20-186—Z-eaX
ENA-TCS-009 bs_autz_michele_anY_ha1

In the next sequence of events, once John has successfully bootstrapped and is communicating
with his selected HA a video call is established to the SAR base. This call will be continued
throughout his journey on the way to be collected by the search and rescue personnel. The
handover between various IPv6 and IPv4 networks is represented by the following test cases and
graphical test bed references.

Table 4-2 Mapping of Scene 3 to Test Cases & Demonstration of Handovers

Test Case References Test Bed Graphical References
ENA-TCS-009 handover_michele_haY_anX

ENA-TCS-007
ENA-TCS-008

4.1.2 SAR Scene 6 Demonstration

Scene 6 is described in [ENA-D6.1] as follows:

“The main content of Scene 6’s descriptive text involves an ambulance picking up the rescue
victim and transporting him in the Ambulance to the hospital location. This scene includes
specific mobility issues, challenges and domain issues, taking into account IPv4 interworking
and IPv6 Middlebox traversal to mention but some. Environmental Issues and assumptions must
also be taken into consideration when completing a more detailed work flow of this scene in
order to incorporate and deal with all aspects of the scene.”

The first action in Scene 6 is where John switches back on his MN as he is on the way back to
the hospital. He is out of range of the incident control vehicle and only has a signal to his home
network. Johns MN needs to bootstrap in an EAP, dual-stack network, which requires EAP-
based authentication, using the integrated mechanism with the IKE-PSK optimisation. However,
on John’s home network his operator has a number of ENABLE functions being carried out in
the background. Firstly the HA-DB Manager is at periodic intervals continuing to collect

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 105 of 153

information about the state of the Home Agents in the network. The parameters including
bandwidth, number of registrations and Region IDs, which are stored in the HA-DB manager.
The MSA-AAA server is then periodically querying the HA-DB Manager to identify which HA
is currently the one with the lowest bandwidth or registrations etc. Both the query to the HAs and
the SQL query to the HA-DB manager can be found in the test cases and test bed graphical
scenarios as described in the following table.

Table 4-3 Mapping of Scene 3 to Test Cases & Demonstration of HA Load Sharing

Test Case References Test Bed Graphical References
ENA-TCS-002 integ_hal_snmp

 integ_hal_sql

Before leaving the scene John switches on his MN, again bootstrapping of John’s mobile node
will take place. He then starts a video call to make sure vital information regarding the patient
reaches the hospital. The victim is loaded onto the ambulance and his vitals are continuously
been sent from the ambulance on the journey to the hospital. On his way to the hospital John is
constantly handing over from one network to another including IPv6 and IPv4 networks. These
are primarily his home network which is protected by EAP and also other networks which use
the DHCPv6 mechanism to allow John send information from his PDA. The sequence of events
for the EAP based network and DHCPv6 based scenarios can be found in the following test case
scenarios and Test Bed Graphical references.

Table 4-4 Mapping of Scene 3 to Test Cases & Demonstration of Integrated Bootstrapping with DCHPv6

Test Case References Test Bed Graphical References
ENA-TCS-003 integ_psk_auth_ alex_haX_2001-6b8-20-186—Z-eaX

ENA-TCS-004 bs_autz_alex_anX_haX
ENA-TCS-005 integ_bs_dhcp_an5_ha1_ 2001-6b8-20-186--ea1
ENA-TCS-008 integ_bs_dhcp_an5
ENA-TCS-009 integ_bs_dhcp_ha1_2001-6b8-20-186--ea1
 integ_psk_auth_ivano_haX_2001-6b8-20-186—Y-X

 bs_autz_ivano_anX_haX

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 106 of 153

4.2 Trial of the ENABLE Demonstration

Bringing the ENABLE demonstration to life comprises of a number of different software
components that work in a serial fashion to demonstrate both visually (from a command line)
and graphically (a flash application) exactly how all the different aspects of the project come
together in ENABLE MIPv6 service environment. The demonstration is comprised of the
following architecture.

Figure 4-1 Flash, Ruby Server and Enable Component/Module Interaction

The trial demonstration comprises of four main parts, the Test bed, ENABLE developed
software components, a Flash application and a Ruby Server.

4.2.1 Trial Test bed

The test bed contains all of the hardware and virtual servers that are part of the demonstration.
These include the DNS, DHCP, MSA-AAA, ASA-AAA, HA’s etc. These components are
represented on the graphical end of the demonstration and are described in detail in Section 3.

4.2.2 ENABLE Software Components

The ENABLE software components have been slightly enhanced to contain code trigger
mechanisms that send information to the demonstration ruby socket server which will in turn
trigger an event to the Flash Application.

4.2.3 Demonstration Visualisation Application

A Flash [FLASH] application is the graphical end of the demonstration. It will display exactly
how the ENABLE components are interworking together and what steps are required to carry out

Enable Component

Enable Component

Enable Component

Enable Component

Ruby
Socket
Proxy
Server

MN-BS
MSA-HH MSG
HA-SEL
BA/BU
Hover

Command Buffer

Pre-Defined Scenes

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 107 of 153

specific actions. For example, the HA selection process has a number of steps including SNMP
data collection. These will be represented by a graphical animation on the flash application. The
flash application was created using Adobe Flash CS3 using action script 2.0.

The Flash application connects to the Ruby socket server on port 7777 listening for commands.
Once a command and its parameters are received the Flash application will play and dynamically
insert information into the required visualisation clip. This information is currently
parameterised with specific data. For example on the HA relocation visualisation clip the
parameters may contain specific information such as HA Bandwidth or number of connected
nodes. This allows the demonstration to graphically display real time information coming from
the test bed and the ENABLE software modules.

4.2.4 Ruby Server

The ruby server is a socket based IPv6/IPv4 server written in Ruby on Rails [RUBY]. It contains
a dual port server listening on port 7777 and port 8888. The server listens for commands on port
7777 from the ENABLE software components. The flash application connects to the server on
port 8888 and listens for commands to play specific movie clips that relate to the incoming
enable module request. If the request to play a visualisation clip comes before the previous one
has been completed they get added to a buffer. The buffer will keep adding requests for
visualisation clips onto the server.

start the infrastructure server to monitor message from infrastructure
nodes
iserver = InfrastructureServer.new(7777, host_v4, ticker)
iserver.start(-1)

start the flash server to manage flash clients
fserver = FlashServer.new(12346, host_v6, ticker)
fserver.start(-1)

Figure 4-2 Example of configuration code for Ruby Server

A ruby server was installed on an Ubuntu 7.04 machine running inside a virtual machine which
is available from the code repository. Once unpacked it can be run by firstly configuring which
addresses it must bind to in “Application.rb”. Once the addresses have been defined other ports
and parameters can be found in the configuration file enable_server.rb.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 108 of 153

4.2.5 Demonstration Example

A typical scenario of how the test bed, ENABLE components, flash demo and ruby server would
be instantiated would be described as follows.

In the split scenario a mobile node must bootstrap against its MSA-AAA server. Firstly, the MN
is turned on by the user. A DNS request is sent to the DNS server in the test bed. The DNS
server is continuously monitoring for DNS requests and notices a request for ha.ist-
enable.tilabs.com Code on the DNS server now sends a request to the ruby server to start the
visualisation “split_bs_dnsquery_2001-6b8-20-186—eaX_163-162-186-10X” The request is
received by the Ruby server and added to the buffer. Since it’s the only command in the buffer it
will automatically be passed onto the flash application. The flash application now plays the
requested visualisation simulating exactly how the operations are being carried out by the real
devices on the network. However, this visualisation plays for a running time of 5 seconds. In the
meantime the mobile node is continuing to authenticate against the HA and the HA is verifying
information with the MSA-AAA. This potentially means there is an overlap of visualisation clips.
To prevent this happening, as the DNS visualisation is playing the next visualisation clip will be
buffered on the Ruby server. Once finished the next logical clip in the sequence will play.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 109 of 153

5. TEST MANAGEMENT AND METHODOLOGY

The objective of the testing phase is to validate the functionality and correctness of the overall
MIPv6 system as defined by the ENABLE project and to detect the differences between the
specified behaviour of the system as per the defined ENABLE architecture [ENA-D1.1] and the
observed behaviour during the test execution. These tests should be conducted the way a normal
user would interact with the system, providing to the user an experience of the full system. This
system testing can be classified as black box testing, since the team does not need to be aware of
how the system is internally built.

Therefore for ENABLE the testing methodology includes:

• Definition of the Tests Cases: Contains a description of the different test cases needed to
validate the system. Tests cases must be described according to the template defined in
Appendix B.

• Set up of the test environment: For conducting the test plan, an adequate testing
environment must be set up. The ENABLE testing environment is fully described in
Section 3.

• Tests execution, according to test specification: Test descriptions and results should be
kept in files to allow easy handling and analysis at different times. However, in some
cases it might be unavoidable to perform tests manually.

• Document test results: A document describing the results of tests (test passed/not passed)
execution must be produced according to a specific template (see Appendix B). Besides,
errors, and bugs must be reported using a ticket tracking tool as described in [ENA-D6.1]

• Analysis of identified weaknesses in the system: From this analysis, suggestions for
improvement must be derived.

It is obvious though, that ENABLE does not provide any direct user interface as it is an
infrastructural based technology, therefore functionality of ENABLE developed components are
difficult to illustrate and test due to the fact that the components are not visible on an actual user
interface. In this way visualisation tools can provide a means to convey the sequence of
operations occurring behind the scene, and can also prove useful during the initial integration
and then testing phases. The visualisation tool as described in Section 4 was used:

• For all system test cases where there will be an expected “output” from the activity of an
ENABLE component.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 110 of 153

• However a number of test cases (“notifications”) will have to be initiated through a
manual or automated/simulated intervention at some point in the network.

This section is intended to describe the System Test Methodology which would be followed in
ENABLE and to provide a full list of test cases that would be used during the System Test
conformance phase.

5.1 Test Cases

There are different types of testing that can be carried out, from White Box Testing, mainly
intended to unit tests, where the software development team are looking to find errors in low
level operations of an ENABLE component. More high level tests than this can be described as:

• Black Box Testing: In this granularity of behavioural testing, the testing team is looking
to find errors in high-level operations, at the level of features, operational profiles and
end – user scenarios. The type of tests defined here are functional tests based on ‘what’
the system should do. These tests are designed to exercise the extremes, interfaces,
boundaries and error conditions of the system. Simply playing around with the average
conditions of the system is not an effective technique for behavioural testing, a structured,
methodical and repeatable sequence of tests and test conditions that probe the suspected
system weaknesses is a must. It is the intention of this section of the document to
describe the ENABLE approach to this task.

• Live Demonstration Tests: A demonstration of the ENABLE architecture involves
putting end users, content experts and early adopters in front of the system, encouraging
them to use and explore the key concepts of the system. This type of testing will be
provided by the official demo site.

ENABLE system tests will focus on Black Box Testing, and the following section contains
detailed descriptions of the different system test cases needed to validate ENABLE architecture.

5.1.1 Summary of Test Case Scenarios

Table 5-1 Test Case Summary

Test Case Scenarios Summary Sheet

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 111 of 153

Case
Test ID

Test Case Name:

ENA-
TCS-001

Split bootstrapping

ENA-
TCS-002

HA Load Sharing

ENA-
TCS-003

Integrated Bootstrapping EAP

ENA-
TCS-004

Integrated Bootstrapping DHCPv6

ENA-
TCS-005

Handover IPv4-Interworking

ENA-
TCS-006

Split bootstrapping PDA

ENA-
TCS-007

Handover PDA

ENA-
TCS-008

VoIP Call with Streaming Audio

ENA-
TCS-009

Streaming Video with Handover

ENA-
TCS-010

Pinhole creation for BU/BA after handover

ENA-
TCS-011

Pinhole creation for BT/RO data traffic

ENA-
TCS-012

Pinhole deletion

ENA-
TCS-013

Mobility Optimised Handover

ENA-
TCS-014

Streaming with Mobility Optimised Handover

5.1.2 Integrated Software Test Cases

5.1.2.1 Enable Test Case Scenario 001: Split bootstrapping

Table 5-2 ENA-TCS-001

Enable Test Case Scenario

001

Test Case ID: ENA-TCS-001
Test Case Name: Split bootstrapping

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 112 of 153

Test Case Description:

The MN1 bootstraps in AN1 (open, dual-stack) using
the split mechanism.
The MN1 discovers HA1 (or HA2) IPv4/v6 addresses
through a DNS query “ha.ist-enable.org”, with DNS
round-robin load sharing being used.

Work Package Reference: WP1, WP4
 Software Module

MN1 MIPL ike2d-mn

HA1 MIPL diametermip6
 ike2d-ha

MSA msad Users DB

Components under test:

DNS
AN1 Open DS

(IPv4/IPv6)
network

Testbed Nodes involved:

MN1 -> DNS Ph
MN1 -> HA1 Pb
HA1 Hc, Hd
HA1 -> MSA Pf, Pg
MSA Ab

Protocols/Ifs involved:

Step ENA-TCS-
001-01

MN makes a DNS query for ha.ist-
enable.tilab.com

Step ENA-TCS-
001-02

IKEv2 (HoA Assignment) is done
and SA between MN & HA is
created

Steps Taken:
Step ENA-TCS-
001-03

MN sends BU to HA.
The HA sends a Diameter MIP6-
Authorisation-Request (MAR) to the
MSA AAA server.
MSA-AAA checks MN’s profile, and
replies with a Diameter MIP6-
Authorisation-Answer
MN receives BA from HA

MN1 with the identity <michele@ist-enable.tilab.com >
is authorised to use the mobility service through HA1
on AN1. Expected Results:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 113 of 153

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.2.2 Enable Test Case Scenario 002: HA Load Sharing

Table 5-3 ENA-TCS-002

Enable Test Case Scenario

002

Test Case ID: ENA-TCS-002
Test Case Name: HA Load Sharing

Test Case Description:

HA Loading Sharing parameters are collected via
SNMP from each HA, saved into HA-DB (interval
HA_Ptime) and load parameters of all HAs are
retrieved from the HA-DB Manager via SQL (interval
HA-DB_Ptime) by the MSA.

Work Package Reference: WP3
 Software Module

HA1 MIPL NETSNMP

HA2 MIPL NETSNMP

HA-DB
Manager

HA Manager HA DB
Components under test:

MSA HA select
HN Home network

(IPv4/IPv6)
 Testbed Nodes involved:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 114 of 153

HA1, HA2 He
HA1, HA2 ->
HA-DB Mgr

Pc

HA-DB Mgr Da
HA-DB Mgr->
MSA

Pd
Protocols/Ifs involved:

Step ENA-
TCS-002-01

The HA-DB Mgr initiates a periodic
SNMP query to collect HA loading
sharing parameters from each HA,
retrieving them every interval
HA_Ptime.

Step ENA-
TCS-002-02

For each HA, HA loading sharing
parameters are stored in the HA DB. Steps Taken:

Step ENA-
TCS-002-02

The MSA initiates a periodic SQL
query for load parameters of all Has,
retrieving them from the HA-DB
Manager every interval HA-
DB_Ptime.

Expected Results:
The MSP-AAA can evaluate which HA to assign to the
next registering MN, based on load sharing
parameters.

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.2.3 Enable Test Case Scenario 003: Integrated Bootstrapping EAP

Table 5-4 ENA-TCS-003

Enable Test Case Scenario

003

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 115 of 153

Test Case ID: ENA-TCS-003
Test Case Name: Integrated Bootstrapping EAP

Test Case Description:

MN2 bootstraps in AN2 (EAP, dual-stack
network), which requires EAP-based
authentication, using the integrated mechanism
with the IKE-PSK optimisation.

Work Package Reference: WP1, WP3
 Software Module

MN2 MIPL Xsupplicant
 ike2d-mn

ASA Freeradius Users DB

HA2 MIPL diametermip6
 ike2d-ha

MSA HA select

Components under test:

AN2 EAP DS

(IPv4/IPv6)
network

Testbed Nodes involved:

MN2 Ma, Mb
MN2->ASA Pe
ASA Aa
ASA->MSA Ac
MN2 -> HA2 Pa, Pb
HA2 Hc, Hd
HA2->MSA Pf, Pg

Protocols/Ifs involved:

Step ENA-
TCS-003-01

MN2 initiates EAP-based
bootstrapping Steps Taken:

Step ENA-
TCS-003-02

ASA makes a HA selection request
towards the MSA with the weighted
load sharing parameters being No.
of Registrations.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 116 of 153

Step ENA-
TCS-003-03

MSA-AAA calculates HA selection
reply by looking at No. of
Registrations for each HA.

Load HA1: 1 MN registered
Load HA2: 0 MN registered

HA2 is selected

Step ENA-
TCS-003-04

ASA returns EAP-based
bootstrapping Success to MN2
with HA2 IPv6 Address returned.
MN2 is authorised to use the AN2
network

Step ENA-
TCS-003-05

IKEv2 (HoA Assignment) is done
and SA between MN2 & HA2 is
created

Step ENA-
TCS-003-06

MN2 sends BU to HA2.
The HA2 sends a Diameter MIP6-
Authorisation-Request (MAR) to
the MSA AAA server.
MSA-AAA checks MN2’s profile,
and replies with a Diameter MIP6-
Authorisation-Answer
MN2 receives BA from HA2

Expected Results:

 The load sharing assigns MN2 to
HA2 since HA1 is already serving
MN1.
MN2 with the identity <alex@ist-
enable.tilab.com > is authorised to
use the mobility service through
HA2 on AN2.

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 117 of 153

5.1.2.4 Enable Test Case Scenario 004: Integrated Bootstrapping DHCPv6

Table 5-5 ENA-TCS-004

Enable Test Case Scenario

004

Test Case ID: ENA-TCS-004
Test Case Name: Integrated Bootstrapping DHCPv6

Test Case Description:

MN4 bootstraps in AN5, requiring EAP-based
authentication, but with DHCPv6 bootstrapping
used.

Work Package Reference: WP1
 Software Modules

MN4 MIPL Xsupplicant
 ike2d-mn DHCPv6

Client

ASA Freeradius Users DB

HA1 MIPL diametermip6
 ike2d-ha

MSA HA select

NAS DHCPv6

relay
Authenticator

Components under test:

DCPv6
server

AN5 EAP IPv6
only
network

 Testbed Nodes Involved

MN4 Ma, Mb
MN4->ASA Pe
ASA Aa
ASA->MSA Ac
MN4 -> HA1 Pa, Pb

Protocols/Ifs involved:

HA1 Hc, Hd

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 118 of 153

HA1->MSA Pf, Pg
NAS Pi, Pk
Step ENA-
TCS-004-01

MN4 initiates EAP-based
bootstrapping

Step ENA-
TCS-004-02

ASA makes a HA selection request
towards the MSA with the
weighted load sharing parameters
being No. of Registrations.

Step ENA-
TCS-004-03

MSA-AAA calculates HA selection
reply by looking at No. of
Registrations for each HA.

Load HA1: 1 MN registered
Load HA2: 2 MN registered

HA1 is selected

Step ENA-
TCS-004-04

ASA returns EAP-based
bootstrapping Success, passing
through NAS in AN5 HA1 IPv6
Address returned. MN4 is
authorised to use the AN5
network.

Step ENA-
TCS-004-05

MN4 initiates DHCPv6 Information
Request. DHCPv6 Server returns
HA1 IPv6 Address.

Step ENA-
TCS-004-06

IKEv2 (HoA Assignment) is done
and SA between MN4 & HA1 is
created

Steps Taken:

Step ENA-
TCS-004-07

MN4 sends BU to HA1.
The HA1 sends a Diameter MIP6-
Authorisation-Request (MAR) to
the MSA AAA server.
MSA-AAA checks MN4’s profile,
and replies with a Diameter MIP6-
Authorisation-Answer
MN4 receives BA from HA1

MN4 with the identity <ivano@ist-enable.tilab.com
> is authorised to use the mobility service through
HA1 on AN5. Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 119 of 153

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.2.5 Enable Test Case Scenario 005: Handover IPv4Interworking

Table 5-6 ENA-TCS-005

Enable Test Case Scenario
005

Test Case ID: ENA-TCS-005
Test Case Name: Handover IPv4Interworking

Test Case Description:

MN1 moves on to an IPv4-only network (AN6)

WP1, WP2
Work Package Reference: Software modules

MN1 MIPL

HA1 MIPL Components under test:

AN1 IPv6 only network
AN6 IPv4 only network Testbed Nodes involved:

MN1 -> HA1 Pb

Protocols/Ifs involved:
Step ENA-
TCS-005-01

MN1 moves into range of AN6 & out
of range of AN1

Step ENA-
TCS-005-02

MN1 sends BU to HA1.
MN1 receives BA from HA1

Steps Taken:

Expected Results:
MN1 with the identity <michele@ist-enable.tilab.com >
is authorised to use the mobility service through HA1
on AN6.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 120 of 153

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.2.6 Enable Test Case Scenario 006: Split bootstrapping PDA

Table 5-7 ENA-TCS-006

Enable Test Case Scenario

006

Test Case ID: ENA-TCS-006
Test Case Name: Split bootstrapping PDA

Test Case Description:

The MN3 (PDA) bootstraps in AN3 (open, v6-only)
using the split mechanism.
The MN3 discovers HA1 (or HA2) IPv4/v6 addresses
through a DNS query “ha.ist-enable.org”, with DNS
round-robin load sharing being used.

Work Package Reference: WP1, WP4, WP6
 Software Module

MN3 MIPL ike2d-mn

HA1 MIPL diametermip6
 ike2d-ha

MSA msad Users DB

Components under test:

Testbed Nodes involved: DNS

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 121 of 153

AN3 Open IPv6
network

MN3 -> DNS Ph
MN3 ->HA1 Pb
HA1 Hc, Hd
HA1 -> MSA Pf, Pg

Protocols/Ifs involved:

MSA Ab
Step ENA-
TCS-006-01

MN3 makes a DNS query for ha.ist-
enable.tilab.com

Step ENA-
TCS-006-02

IKEv2 (HoA Assignment) is done and
SA between MN3 & HA1 is created

Steps Taken:
Step ENA-
TCS-006-03

MN3 sends BU to HA1.
The HA1 sends a Diameter MIP6-
Authorisation-Request (MAR) to the
MSA AAA server.
MSA-AAA checks MN’s profile, and
replies with a Diameter MIP6-
Authorisation-Answer
MN3 receives BA from HA1

Expected Results:
MN3 with the identity <luca@ist-enable.tilab.com > is
authorised to use the mobility service through HA1 on
AN3.

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.2.7 Enable Test Case Scenario 007: Handover PDA

Table 5-8 ENA-TCS-007

Enable Test Case Scenario
007

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 122 of 153

Test Case ID: ENA-TCS-007
Test Case Name: Handover PDA

Test Case Description:

MN3 moves on to an IPv4-only network (AN7), and
then onto IPv6-only network (AN4)

Work Package Reference: WP1, WP2, WP4, WP6
 Software Module

MN1 MIPL

HA1 MIPL Components under test:

AN3 Open IPv6 only

network

AN7 Open IPv4 only
network

AN4 EAP IPv6 only
network

Testbed Nodes involved:

MN1 -> HA1 Pb

Protocols/Ifs involved:
Step ENA-
TCS-007-01

MN3 moves into range of AN7 & out
of range of AN3

Step ENA-
TCS-007-02

MN3 sends BU to HA1.
MN3 receives BA from HA1

Step ENA-
TCS-007-03

MN3 moves into range of AN4 & out
of range of AN7

Steps Taken:

Step ENA-
TCS-007-03

MN3 sends BU to HA1.
MN3 receives BA from HA1

MN3 with the identity <luca@ist-enable.tilab.com > is
authorised to use the mobility service through HA1 on
AN3, AN7 & AN4 without significant interruption to its
mobility service.

Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 123 of 153

Severe Defect:

 Yes No

Test Conducted by:

5.1.2.8 Enable Test Case Scenario 008: VoIP Call with Streaming Audio

Table 5-9 ENA-TCS-008

Enable Test Case Scenario
008

Test Case ID: ENA-TCS-008
Test Case Name: VoIP Call with Streaming Audio

Test Case Description:

Upon request MN2 and MN4 start a sip-call session
between them, then MN2 is to perform a handovers
among EAP-networks.

WP1, WP2, WP4, WP6
Work Package Reference: Software Modules

MN2 MIPL SIP Client App

MN4 MIPL SIP Client App

HA2 MIPL

Components under test:

Multimedia Server SIP Proxy
AN2 IPv6 only

network

AN4 IPv6 only
network

 Testbed Nodes involved:

MN2 -> HA2 Pb
MN2 -> MN4 SIP Protocols/Ifs involved:

Steps Taken:
Step ENA-TCS-
008-01

MN2 and MN4 run their SIP Client
application which registers with the
ENABLE SIP proxy

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 124 of 153

Step ENA-TCS-
008-02

MN2 initiates a SIP call session
towards MN4. MN4 answers the
call and live streaming audio is
present

Step ENA-TCS-
008-03

MN2 moves into range of AN4 &
out of range of AN2

Step ENA-TCS-
008-04

MN2 sends BU to HA2.
MN2 receives BA from HA2

Step ENA-TCS-
008-05

Check the presents of audio
streaming between MN2 and MN4

During the MN2 network access transition the SIP call
session remains active and once MN2 is attached to its
new network, audio conversation can be exchanged
again between MN2 and MN4

Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.2.9 Enable Test Case Scenario 009: Streaming Video with Handover

Table 5-10 ENA-TCS-009

Enable Test Case Scenario
009

Test Case ID: ENA-TCS-009
Test Case Name: Streaming Video with Handover

Test Case Description:

Upon request MN4 starts a video-streaming session
with the ENABLE Multimedia server. Then MN4 is to
perform handovers among EAP-networks and Open
networks.

Work Package Reference: WP1, WP2, WP4, WP6

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 125 of 153

 Software Modules
MN4 MIPL Video Client

App

HA2 MIPL

Components under test:

Multimedia
Server

Video Streamer

AN4 IPv6 only network
AN5 IPv6 only network
AN1 DS (IPv6/IPv4)

network

Testbed Nodes involved:

MN4 -> HA1 Pb
MN2 -> MN4 SIP Protocols/Ifs involved:

Step ENA-TCS-
009-01

MN4 initiates a video streaming
session towards the multimedia
server and live streaming video is
presented on MN4

Step ENA-TCS-
009-02

MN4 moves into range of AN4 & out
of range of AN5

Step ENA-TCS-
009-03

MN4 sends BU to HA1.
MN4 receives BA from HA1

Step ENA-TCS-
009-04

Check the presents of video
streaming on MN4

Step ENA-TCS-
009-05

MN4 moves into range of AN1 & out
of range of AN4

Step ENA-TCS-
009-06

MN4 sends BU to HA1.
MN4 receives BA from HA1

Step ENA-TCS-
009-07

Check the presents of video
streaming on MN4

Steps Taken:

During the MN4 network access transitions the
streaming video session remains active and once MN4
is attached to its new network, the video remains
playing.

Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 126 of 153

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.3 Mobile IPv6 Firewall Traversal Test Cases

5.1.3.1 Enable Test Case Scenario 010: Pinhole creation for BU/BA after handover

Table 5-11 ENA-TCS-010

Enable Test Case Scenario
010

Test Case ID: ENA-TCS-010
Test Case Name: Pinhole creation for BU/BA after handover

Test Case Description:

MN performs handover and then the firewall pinholes
for BU/BA should be installed

Work Package Reference: WP1, WP2, WP6
 Software Modules

MN MIPL MIP6FWD,NSIS

HA MIPL MIP6FWD,NSIS

Components under test:

MN-FW NSIS

HA-FW NSIS

Testbed Nodes involved:

MN<->HA Pfa
 Protocols/Ifs involved:
MN<->FW<->HA Pfb

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 127 of 153

Step ENA-TCS-
010-01

MN starts in home net and then
perform handover

Step ENA-TCS-
010-02

Before sending BU through HA, MN
performs firewall pinhole creation
for BU and BA

Step ENA-TCS-
010-03

MN sends BU to HA
MN receives BA from HA

Steps Taken:

The firewall pinholes should be installed at the MN-FW
and the HA-FW as described in D2.1.2. Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.3.2 Enable Test Case Scenario 011: Pinhole creation for BT/RO data traffic

Table 5-12 ENA-TCS-011

Enable Test Case Scenario
011

Test Case ID: ENA-TCS-011
Test Case Name: Pinhole creation for BT/RO data traffic

Test Case Description:

MN wants to communicate with CN and the firewall
pinholes for BT/RO data traffic should be installed

Work Package Reference: WP1, WP2, WP6
 Software Modules

MN MIPL MIP6FWD,NSIS

Components under test:

HA MIPL MIP6FWD,NSIS

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 128 of 153

CN MIPL MIP6FWD,NSIS

MN-FW NSIS

HA-FW NSIS

Testbed Nodes involved:

CN-FW NSIS
MN<->HA Pfa
HA<->CN Pfa
MN<->CN Pfa
MN<->FW<->HA Pfb
HA<->FW<->CN Pfb

Protocols/Ifs involved:

MN<->FW<->CN Pfb
Step ENA-TCS-
011-01

MN wants to start communication
with CN

Step ENA-TCS-
011-02

Before sending data packets (either
BT or RO), MN performs firewall
pinhole creation for BT and RO data
traffic

Step ENA-TCS-
011-03

MN sends data traffic to CN

Steps Taken:

The firewall pinholes should be installed at the MN-FW,
HA-FW and the CN-FW as described in D2.1.2. Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.3.3 Enable Test Case Scenario 012: Pinhole deletion

Table 5-13 ENA-TCS-012

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 129 of 153

Enable Test Case Scenario
012

Test Case ID: ENA-TCS-012
Test Case Name: Pinhole deletion

Test Case Description:

MN performs test cases ENA-TCS-010 and ENA-TCS-
011 and move back to home net. Firewall pinholes
which are no longer needed should be removed
automatically after a specific timeout.

Work Package Reference: WP1, WP2, WP6
 Software Modules

MN-FW NSIS

HA-FW NSIS

CN-FW NSIS

Components under test:

 Testbed Nodes involved:

 Protocols/Ifs involved:

Step ENA-TCS-
012-01

MN performs test cases ENA-TCS-
010 and ENA-TCS-011 and moves
back to home net.

Step ENA-TCS-
012-02

Firewall pinholes should be
removed automatically after a
specific timeout.

Steps Taken:

The firewall pinholes which are no longer needed
should be deleted automatically at the MN-FW, HA-FW
and the CN-FW after a specific timeout. Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 130 of 153

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.4 Mobility Optimisation Test Cases

5.1.4.1 Enable Test Case Scenario 013: Mobility Optimised Handover

Table 5-14 ENA-TCS-013

Enable Test Case Scenario
013

Test Case ID: ENA-TCS-013
Test Case Name: Mobility Optimised Handover

Test Case Description:

MN starts a network initiated handover for AP1 to AP2
(figure 3.3)

Work Package Reference: WP1, WP2, WP6
 Software Modules

MN MIPL GSABA

FMIPv6-AR FMIPv6-MN

Components under test:

AP1 IPv6 only network
AP2 IPv6 only network

Testbed Nodes involved:

 Protocols/Ifs involved:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 131 of 153

Step ENA-TCS-
013-01

MN request service authorisation

Step ENA-TCS-
013-02

Force MN to do handover (network
initiated)

Step ENA-TCS-
013-03

Behaviour and performance

Steps Taken:

A smooth handover should be observed

Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

5.1.4.2 Enable Test Case Scenario 014: Streaming with Mobility Optimised Handover

Table 5-15 ENA-TCS-014

Enable Test Case Scenario
014

Test Case ID: ENA-TCS-014
Test Case Name: Streaming Video with Mobility Optimised Handover

Test Case Description:

MN should start streaming video and then it should
initiate a handover

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 132 of 153

Work Package Reference: WP1, WP2, WP4, WP6
 Software Modules

MN MIPL Video Client
App

FMIPv6-AR FMIPv6-MN

Components under test:

Multimedia
Server

Video Streamer

AP1 IPv6 only network
AP2 IPv6 only network

Testbed Nodes involved:

 Protocols/Ifs involved:

Step ENA-TCS-
014-01

MN should start video streaming
and then perform handover

Step ENA-TCS-
014-02

MN moves into range of AN4 & out
of range of AN5

Step ENA-TCS-
014-03

MN sends BU to HA1.
MN receives BA from HA1

Steps Taken:

There should a minor disruption in video streaming as
the codes are not properly optimised but it should be
able to resume. Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 133 of 153

5.1.5 Test Case Evaluation

This section shall address the issue of how to determine when Black Box testing has been
completed and to assigning a verdict to the execution of a test case. One of the primary criterions
in this step is that all planned test cases have been executed.

Once a test case has been exercised the easiest exit criterion to evaluate is the fact that the test
case has been successfully executed and the verdict is that it has passed. However when the
verdict is that a test case has been executed, but unsuccessfully, a number of factors have to be
considered in order to fully evaluate the test.

Three types of verdict will be used to qualify the results of a test case execution: pass, fail and
inconclusive.

• Pass means that the test case results prove that the observed test outcome gives evidence
of conformance to the ENABLE usage scenario.

• Fail means that the observed test outcome either demonstrates non-conformance to the
ENABLE architecture or contains at least one invalid test event (according to the test
specification).

• Inconclusive means that an event, not related to the component under test, did not occur
or lead to a wrong result. In this case, the test case result has no significance and can be
discarded.

In addition to the verdict described above the test cases will also be assigned a priority on the
level of attention a particular test case result will require. This section of the test case will only
be completed if the test case status has been set to failed. There are four priorities an ENABLE
test case may have.

• Immediate: This test case needs to have immediate attention as it’s a vital part of a
components function and may affect the Enable test bed or individual components.

• High: High means the test case that failed will need priority over other cases that are
Medium and low. It is however, a critical flaw that will need attention.

• Medium: Medium priorities are test cases that have the same critical flaw as a high
priority test case but just fall under a lower priority.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 134 of 153

• Low: Low priority is where it may not affect the test bed or components but may be fixed
due to cosmetic or non critical reasons. Low priorities will always be treated last if there
are a number of failed test cases.

A severe defect will override any priorities due to a major flaw in an enable test bed component
or modules. Server defects are uncommon in the test procedure and if found should be given
urgent attention.

A test result template, described in Appendix C, will be used to document test case execution
results.

5.2 S/W Development Management

As described in [ENA-D6.1] the ENABLE software development teams continued to use
Subversion as the version controlled archive for the source code and TRAC for bugtracking.

The subversion server hosted on [http://repos.ist-enable.org/repos] was used to store all versions
(stable and unstable) of the software modules developed in ENABLE, pre-compiled binaries of
associated libraries and configuration files for the test bed components. The subversion
repository structure was divided up as follows:

• http://repos.ist-enable.org/repos/binaries/

o pre-compiled binaries of kernels, associated libraries and applications to the
ENABLE code base

• http://repos.ist-enable.org/repos/coderepos/

o Here the live, ever changing source code, build files for ENABLE developments
were stored

• http://repos.ist-enable.org/repos/configurations/

o Here all stable configuration and scripts files for the test bed set up were stored in
this folder

5.3 Test Reporting/Debugging Tools Description

As unit testing was carried by the individual software development teams, there were a varying
number of debugging tools used within the project, however there were three common tools used
which are worth noting, the standard GNU debugger (gdb), valgrind and callgrind.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 135 of 153

The GNU debugger (gdb) allows a developer to view what is going on `inside' their program
while it executes on the Linux OS.

The gdb can carry out four main operations:

• Start a program, specifying anything that might affect its behaviour.

• Make a program stop on specified conditions.

• Examine what has happened, when the program has stopped.

• Change things in a program, so the developer can experiment with correcting the effects
of one bug and go on to learn about another.

In ENABLE at times all four operations were implemented.

The Valgrind programme provides a suite of debugging and profiling tools, however on
ENABLE it was primarily used as a memory checking tool to detect many common memory
errors such as:

• Identifying improper uses of memory such as the overrunning of the heap block
boundaries, or the reading/writing to freed memory.

• Using values before they have been initialised.

• Incorrect freeing of memory, such as double-freeing of heap blocks.

• Memory leaks.

Finally Callgrind is a programme that allows a developer to run an application under supervision
to generate profiling data. This data is used to measure how much CPU it being consumed by an
application and to help optimise the functions and hence the speed of an application.

During the course of this type of testing the Trac “defect tracking” system installed during year
one of the project was used.

http://repos.ist-enable.org/

Trac allowed the developers to gain quick access to the code repository (Repository Browse) and
to keep track of current faults on their prototypes (Ticket System) while providing testers with a
co-ordinated approach to reporting faults.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 136 of 153

6. COLLABORATION WITH IST PROJECTS (TI)

 Throughout the entire duration of the ENABLE project possible collaborations with other IST
Projects have been sought and evaluated. It was decided that the most valuable opportunity was
an agreement with Anemone Project [ANEMONE] since its primary goal is to provide a
playground test-bed supporting mobile users, devices and enhanced services by integrating
cutting edge IPv6 mobility and multihoming initiatives. An official agreement between
ENABLE and ANEMONE has been signed to describe the technical content of the collaboration
and a few basic rules to regulate it.

The key technical points of the agreement were:

• to test and evaluate the ENABLE software and its interoperability in the ANEMONE
test-bed and to provide the ENABLE partners with a detailed test report thereof;

• to provide the ENABLE partners with a reproducible copy (in source code form) of any
modification or derivative work of the ENABLE software developed by ANEMONE
partners and to license the same, on a non–exclusive, free of charge basis.

The basic idea of the agreement was to provide ANEMONE partners with a copy of binaries and
source code of selected module of the ENABLE architecture on a non–exclusive, free of charge
basis subject to the Open Source Licenses of the original packages. The components that have
been selected for the collaboration were those involved in the split scenario since they make up
the core of the ENABLE bootstrapping architecture.

Another expected outcome of the collaboration is the validation of the ENABLE software on
additional platforms, such as handheld devices.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 137 of 153

7. CONCLUSION

The scope of this document was to provide a description of the prototype software developments
undertaken within the ENABLE project and then to proceed with a description of the network
integration and trials of these prototypes and finally to highlight the mechanisms towards the
validation and verification of the new ENABLE MIPv6 service environment.

In Section 2 the document picks up from [ENA-D6.1] and takes the initial prototypes described
in [ENA-D6.1] and updates the software design and implementation as seen after year two of the
project.

In some cases, such as the EAP-based MIPv6 bootstrapping, AAA for MIPv6 bootstrapping,
DSMIP interworking with IPv4 networks, and HA load sharing, only the differences in the
design are highlighted in this deliverable. In others cases such as for the “DHCPv6 extensions on
access router” and “Softwires as tunnelling solution for IPv4 interworking” whole new designs
are described. All but Softwires of the developed components from WP1, WP2 and WP3 have
integrated seamlessly, and are called the “Integrated Software of ENABLE” throughout this
document. The reason behind not integrating the Softwire components is that though it solves the
interworking issue, it doesn’t currently support handovers and thus it can’t be considered a
complete mobility solution.

The other two ENABLE prototypes components, the MIPv6 firewall traversal and Fast Mobile
IPv6 (FMIPv6), were developed as separate mobility extensions and are also described in
Section 2. There are some significant updates to these components as compared to their
descriptions in [ENA-D6.1].

The document moves on to Section 3 which describes the research trial infrastructure for the
integrated software components which was hosted at TI, the MIPv6 firewall traversal software
components hosted at UGOE and Fast Mobile IPv6 (FMIPv6) software components hosted in
Brunel. These reference trial infrastructures were initially used to check the compatibility and the
functionality of the software modules being created by ENABLE. However once the software
was stable, the trial infrastructures were amalgamated into one test bed which was then used for
component integration and then the final demonstration, all hosted by TI.

Section 4 presents the realisation of the ENABLE application scenario, which from [ENA-D6.1]
was the Scene 3 & Scene 6 of the search & rescue management scenario. It shows the
association between the search & rescue scenes and its instantiation as a demonstration in the
ENABLE MIPv6 service environment.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 138 of 153

Section 5 captures the methodology used to validate and verify the ENABLE prototype
developments. It also outlines the system tests carried out in the component integration and
validation phase.

In conclusion this document is a comprehensive summary of software development carried out
on specific functional components from the ENABLE work packages 1 to 4, the integration of
these elements, entities and components, the conformance testing of these components to the
ENABLE architecture and finally the demonstration of an efficient and operational mobility
service in large heterogeneous IP networks.

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 139 of 153

8. REFERENCES

[DNAv4] B. Aboba, J. Carlson, S. Cheshire: Detecting Network Attachment in IPv4
(DNAv4), IETF RFC4436, March 2006

[draft-ietf-mip6-hiopt-02.txt]
 Hee Jin Jang, Alper Yegin, Kuntal Chowdhury, JinHyeock Choi: “DHCP

Option for Home Information Discovery in MIPv6”, draft-ietf-mip6-hiopt-02
(work in progress), February 2007

[draft-ietf-nsis-nslp-natfw]
 M. Stiemerling, H. Tschofenig, C. Aoun, E. Davies “NAT/Firewall NSIS

Signaling Layer Protocol (NSLP), draft-ietf-mip6-hiopt-02.txt (work in
progress), July 2007

[draft-ietf-nsis-ntlp]
 H. Schulzrinne, R. Hancock „GIMPS: General Internet Messaging Protocol

for Signaling”, draft-ietf-nsis-ntlp (work in progress), July 2007

[draft-ietf-nsis-ntlp-statemachine]
 T. Tsenov, H. Tschofenig, X. Fu, C. Aoun, E. Davies “GIST State
 Machine”, draft-ietf-nsis-ntlp-statemachine (work in progress), July 2007

[draft-werner-nsis-natfw-nslp- statemachine]
 C. Werner, N. Steinleitner, X. Fu, H. Tschofenig, C. Aoun
 NAT/FW NSLP State Machine“ draft-werner-nsis- natfw-nslp-
 statemachine-06.txt (work in progress), November 2007

[draft-ietf-softwire-hs-Softwires-l2tpv2]
 B. Storer, C. Pignataro, M. Dos Santos, B. Stevant, J. Tremblay:
 “Hub & Spoke Deployment Framework with L2TPv2", draft-ietf-
 softwire-hs-framework-l2tpv2-07, (work in progress) September 2007

[EAP-AKA] J. Arkko, H. Haverinen, “Extensible Authentication Protocol Method for 3rd

Generation Authentication and Key Agreement (EAP-AKA)”, IETF RFC
4187, January 2006

[ENA-D1.1] Project IST-ENABLE Deliverable D1.1 “Requirements, scenarios and initial

architecture”, June 2006.

[ENA-D1.2] Project IST-ENABLE Deliverable D1.2 “Solutions for Mobile IPv6

boostrapping and load sharing across Home Agents”, December 2006.

[ENA-D2.1.2] Project IST-ENABLE Deliverable D2.1.2 “Final results in middlebox

traversal”, June 2007

[ENA-D2.2] Project IST-ENABLE Deliverable D2.2 “Solutions for IPv4 interworking with

Mobile IPv6”, March 2007

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 140 of 153

[ENA-D4.2] Project IST-ENABLE Deliverable D4.2“Service authorization and control for
QoS and multi-homing”, October 2007

[ENA-D6.1] Project IST-ENABLE Deliverable D6.1 “Report on case studies and initial

prototypes”, December 2006

[FMIPv6] www.fmipv6.org

[FreeRADIUS] Free Radius, www.freeradius.org

[MIPL] MIPL Mobile IPv6 for Linux, http://www.mobile-ipv6.org/

[NETFILTER] Netfilter, http://www.netfilter.org

[NSIS_UGOE] http://user.informatik.uni-goettingen.de/~nsis/download.html, “Next Steps in

Signaling (NSIS) Implementation by University of Goettingen”, (work in
progress), June 2006

[OpenWRT] Open WRT, http://openwrt.org/

[PEAPv2] A. Palekar et al., "Protected EAP Protocol (PEAP) Version 2", draft-

josefsson-pppext-eap-tls-eap-10 (work in progress), October 2004.

[RFC2131] R. Droms: Dynamic Host Configuration Protocol, IETF RFC2131, March

1997

[RFC2138] C. Rigney, A. Rubens, W. Simpson, S. Willens:

Remote Authentication Dial In User Service (RADIUS), IETF RFC2138,
April 1997.

[RFC2461] T. Narten, E. Nordmark, W. Simpson: Neighbor Discovery for IP Version 6
(IPv6), IETF RFC2461, December 1998

[RFC2462] S. Thomson, T. Narten: IPv6 Stateless Address Autoconfiguration, IETF

RFC2462, December 1998

[RFC2472] D. Haskin, E. Allen: IP Version 6 over PPP, IETF RFC2472, December 1998

[RFC2661] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, B. Palter: Layer Two

Tunneling Protocol "L2TP", IETF RFC2661, August 1999

[RFC3775] D. Johnson, C. Perkins, J. Arkko: Mobility Support in IPv6, IETF RFC3775,

June 2004

[RFC3931] J. Lau, M. Townsley, I. Goyret: Layer Two Tunneling Protocol - Version 3

(L2TPv3), IETF RFC3931, March 2005

[RFC4068] R.Koodli, Ed.: Fast Handovers for Mobile IPv6, IETF RFC4068, July 2005

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 141 of 153

[RFC4285] A. Patel,M. Khalil,H. Akhtar, Authentication Protocol for Mobile IPv6, IETF
RFC4285, January 2006

[RUBY] Ruby on Rails, http://www.rubyonrails.org/

[USAGI] UniverSAl playGround for Ipv6, http://www.linux-ipv6.org/

[WIDE] Wide Project, http://www.wide.ad.jp

[WIDE-DHCPV6]Wide DHCPv6http://sourceforge.net/projects/wide-dhcpv6

[XORP] XORP Router, www.xorp.org

[XSUPP] Xsupplicant v 1.0, http://open1x.sourceforge.net/

 [ANEMONE] http://www.ist-anemone.eu/index.php/Home_Page

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 142 of 153

APPENDIX A.

WP6: Integration & Validation

Title: Split Bootstrapping
Tag: split_bs_dnsquery_2001-6b8-20-186—eaX_163-162-186-10X

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

2001:6b8:20:1845/64

AN6 (IPv4)

163.162.171.32/28

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

DNS query for ha.ist-
enable.tilab.com:

Answer:
2001:6b8:20:186::ea1

163.162.186.101

AN7 (IPv4)
163.162.171.32/28

Figure 8-1 split_bs_dnsquery_2001-6b8-20-186—eaX_163-162-186-10X

WP6: Integration & Validation

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

RA = 500ms

AP2 AP1 AP3

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

AP 6

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

AP4

User authenticated

Method: EAP-TLS
Identity: michele@ist-
enable.tilab.com
No. roundtrips: 6

Title: Split Bootstrapping
Tag: split_bs_ike_michele_anY_2001-6b8-20-186—Z-eaX

michele

Mobility service successfully
bootstrapped

AN7 (IPv4)
163.162.171.32/28Used authenticated and SAs

created

Assigning MN1 HoA:

2001:6b8:20:186::1:ea1

Figure 8-2 split_bs_ike_michele_anY_2001-6b8-20-186—Z-eaX

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 143 of 153

WP6: Integration & Validation

Title: HA Load Sharing
Tag: integ_hal_snmp

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)

163.162.171.32/28

AP 6

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

HA1 Status
Bandwidth

Registrations

HA2 Status
Bandwidth

Registrations

AN7 (IPv4)
163.162.171.32/28

Periodic SNMP query

HA Loading Sharing parametes
collected via SNMP from each

HA (interval HA_Ptime)

Figure 8-3 integ_hal_snmp

WP6: Integration & Validation

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

AP 6

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

Periodic SQL query

Load parameters of all HAs
are retrieved from HA-DB

Manager via SQL (interval HA-
DB_Ptime

HA1 Status
Bandwidth

Registrations
Region ID

Maintainance

HA2 Status
Bandwidth

Registrations
Region ID

Maintainance

Title: HA Load Sharing
Tag: integ_hal_sql

AN7 (IPv4)
163.162.171.32/28

Figure 8-4 integ_ha_sql

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 144 of 153

WP6: Integration & Validation

Title: Integrated Bootstrapping
Tag: integ_bs_eap_haselect

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

AP 6

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

EAP-based
bootstrapping

initiated

AN7 (IPv4)
163.162.171.32/28HA selection request

Parameters:
No. of Registrations

Figure 8-5 integ_bs_eap_haselect

WP6: Integration & Validation

Title: Integrated Bootstrapping
Tag: integ_bs_eapsuc_2001-6b8-20-186--eaX

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

AP1 AP3

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

AP 6

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

MSA-AAA calc HA
selection reply

Load HA1: 1 MN registered
Load HA2: 0 MN registered

HA2 selected

AN7 (IPv4)
163.162.171.32/28

EAP-based
bootstrapping

Success

HA IP Address returned: for
2001:6b8:20:186::ea2

Figure 8-6 integ_bs_eapsuc_2001-6b8-20-186—eaX

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 145 of 153

WP6: Integration & Validation

Title: Integrated Bootstrapping
Tag: integ_psk_auth_ alex_haX_2001-6b8-20-186—Z-eaX

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

AP 6

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

alex

AN7 (IPv4)
163.162.171.32/28

User authenticated

Method: PSK
Identity: alex@ist-
enable.tilab.com
No. roundtrips: 1

Mobility service successfully
bootstrapped

SAs created

Assigning MN2 HoA:

2001:6b8:20:186::1:ea2

PSK Found

IKEv2 Authenication

Figure 8-7 integ_psk_auth_ alex_haX_2001-6b8-20-186—Z-eaX

WP6: Integration & Validation

Title: Integrated Bootstrapping
Tag: bs_autz_alex_anX_haX

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

AP 6

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

User Authorized

Identity: alex@ist-
enable.tilab.com
No. roundtrips: 1

BA received

Mobility service successfully
started!

alex

AN7 (IPv4)
163.162.171.32/28

BU received

User authorized by the\
MSA-AAA server

Figure 8-8 bs_autz_alex_anX_haX

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 146 of 153

WP6: Integration & Validation

Title: Integrated Bootstrapping DHCPv6
Tag: integ_bs_dhcp_ha1_2001-6b8-20-186--ea1

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

AP2

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)

163.162.171.32/28

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

AN7 (IPv4)
163.162.171.32/28

EAP-based network

authorization initiated

EAP-
authentication

Success

HA IP Address
returned: for

2001:6b8:20:186::ea1

Figure 8-9 integ_bs_dhcp_ha1_2001-6b8-20-186--ea1

WP6: Integration & Validation

Title: Integrated Bootstrapping DHCPv6
Tag: integ_bs_dhcp_an5

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

AP3

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

RADIUS-EAP-Answer

Receive Local HA
Selection

EAP Success

AN7 (IPv4)
163.162.171.32/28

Figure 8-10 integ_bs_dhcp_an5

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 147 of 153

WP6: Integration & Validation

Title: Integrated Bootstrapping DHCPv6
Tag: integ_bs_dhcp_an5_ha1_ 2001-6b8-20-186--ea1

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

HA Info injected in
DHCPv6 Relay

DHCPv6 Relay
Information Response

Sends:
HA info. Provided by the

Relay

DHCPv6 Information
Response

HA info.:
HA1

2001:6b8:20:186::ea1

DHCPv6 Information
Req. Initiated

MN receives HA info.

AN7 (IPv4)
163.162.171.32/28

Figure 8-11 integ_bs_dhcp_an5_ha1_ 2001-6b8-20-186--ea1

WP6: Integration & Validation

Title: Integrated Bootstrapping DHCPv6
Tag: integ_psk_auth_ivano_haX_2001-6b8-20-186—Y-X

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

RA = 500ms

AP1

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

AP 6

163.162.184.0/28 163.162.184.128/28

DHCP relay

AN4 (IPv6)

AN7 (IPv4)
163.162.171.32/28

User authenticated

Method: PSK
Identity: ivano@ist-
enable.tilab.com
No. roundtrips: 1

Mobility service successfully
bootstrapped

SAs created

Assigning MN2 HoA:

2001:6b8:20:186::2:1

PSK Found

IKEv2 Authentication

ivano
Figure 8-12 integ_psk_auth_ivano_haX_2001-6b8-20-186—Y-X

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 148 of 153

WP6: Integration & Validation

Title: Integrated Bootstrapping DHCPv6
Tag: bs_autz_ivano_anX_haX

HA 1

DNS
server

ASA-AAA
server

AN1 (DS) AN3 (IPv6)

MSA-AAA
server

IPv6 Network

2001:6b8:20:1846/64

HA-DB
Manager

2001:6b8:20:1841/64

::e1 ::e2 ::e3

::ea1

::50

2001:6b8:20:1843/64

Multimedia
server

::e4

163.162.184.48/28

.52

AN5 (IPv6)

2001:6b8:20:1844/64

DHCPv6
server

::e5

SN

HA 2

::ea2

2001:6b8:20:186/64HN1 163.162.186.0/25

.101 .102

.54 .50.58.55 .59

AN2 (DS)

2001:6b8:20:1842/64

AP2 AP1

2001:6b8:20:1845/64

HA 3

::ea5.105

AN6 (IPv4)
163.162.171.32/28

163.162.184.0/28 163.162.184.128/28

AP5 /
DHCP relay

AN4 (IPv6)

ivano

User Authorized

Identity: ivano@ist-
enable.tilab.com
No. roundtrips: 1

BA received

Mobility service successfully
started!

AN7 (IPv4)
163.162.171.32/28

BU received

User authorized by the\
MSA-AAA server

Figure 8-13 bs_autz_ivano_anX_haX

Figure 8-14 Predictive Handover

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 149 of 153

Figure 8-15 Predictive Handover

Figure 8-16 Predictive Handover

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 150 of 153

Figure 8-17 Predictive Handover

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 151 of 153

APPENDIX B.

Enable Test Case Scenario

000

Test Case ID: ENA-TCS-000
Test Case Name:

Test Case Description:

Work Package Reference:

Components under test:

 Testbed Nodes involved:

Protocols/Ifs involved:

Step ENA-TCS-
000-01

Step ENA-TCS-
000-02

 Steps Taken:

Step ENA-TCS-
000-03

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 152 of 153

Expected Results:

Actual Results:

Test Case Status:

 Passed Failed Inconclusive

Priority:

 Immediate High Medium Low

Severe Defect:

 Yes No

Test Conducted by:

027002 ENABLE D6.2:Report on final prototypes, network integration and validation

24/12/2007 – v1.2 Page 153 of 153

APPENDIX C.

Test Case Scenarios Summary Sheet
Case Test
ID

Test Case Name: Priority: Severe
Defect:

Results Comment

ENA-TCS-
001

Split
bootstrapping

ENA-TCS-
002

HA Load Sharing

ENA-TCS-
003

Integrated
Bootstrapping
EAP

ENA-TCS-
004

Integrated
Bootstrapping
DHCPv6

ENA-TCS-
005

Handover
IPv4Interworking

ENA-TCS-
006

Split
bootstrapping
PDA

ENA-TCS-
007

Handover PDA

ENA-TCS-
008

VoIP Call with
Streaming Audio

ENA-TCS-
009

Streaming Video
with Handover

ENA-TCS-
010

Pinhole creation
for BU/BA after
handover

ENA-TCS-
011

Pinhole creation
for BT/RO data
traffic

ENA-TCS-
012

Pinhole deletion

ENA-TCS-
013

Mobility
Optimized
Handover

ENA-TCS-
014

Streaming with
Mobility
Optimized
Handover

